ﻻ يوجد ملخص باللغة العربية
Let $p$ be an odd prime and let $B$ be a $p$-block of a finite group which has cyclic defect groups. We show that all exceptional characters in $B$ have the same Frobenius-Schur indicators. Moreover the common indicator can be computed, using the canonical character of $B$. We also investigate the Frobenius-Schur indicators of the non-exceptional characters in $B$. For a finite group which has cyclic Sylow $p$-subgroups, we show that the number of irreducible characters with Frobenius-Schur indicator $-1$ is greater than or equal to the number of conjugacy classes of weakly real $p$-elements in $G$.
The classical Frobenius-Schur indicators for finite groups are character sums defined for any representation and any integer m greater or equal to 2. In the familiar case m=2, the Frobenius-Schur indicator partitions the irreducible representations o
Let g be a finite dimensional complex semisimple Lie algebra, and let V be a finite dimensional represenation of g. We give a closed formula for the mth Frobenius-Schur indicator, m>1, of V in representation-theoretic terms. We deduce that the indica
Classically, the exponent of a group is the least common multiple of the orders of its elements. This notion was generalized by Etingof and Gelaki to the context of Hopf algebras. Kashina, Sommerhauser and Zhu later observed that there is a strong co
We define total Frobenius-Schur indicator for each object in a spherical fusion category $C$ as a certain canonical sum of its higher indicators. The total indicators are invariants of spherical fusion categories. If $C$ is the representation categor
We introduce generalized Frobenius-Schur indicators for pivotal categories. In a spherical fusion category C, an equivariant indicator of an object in C is defined as a functional on the Grothendieck algebra of the quantum double Z(C) via generalized