ترغب بنشر مسار تعليمي؟ اضغط هنا

Supporting mixed-datatype matrix multiplication within the BLIS framework

143   0   0.0 ( 0 )
 نشر من قبل Devangi Parikh
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We approach the problem of implementing mixed-datatype support within the general matrix multiplication (GEMM) operation of the BLIS framework, whereby each matrix operand A, B, and C may be stored as single- or double-precision real or complex values. Another factor of complexity, whereby the computation is allowed to take place in a precision different from the storage precisions of either A or B, is also included in the discussion. We first break the problem into mostly orthogonal dimensions, considering the mixing of domains separately from mixing precisions. Support for all combinations of matrix operands stored in either the real or complex domain is mapped out by enumerating the cases and describing an implementation approach for each. Supporting all combinations of storage and computation precisions is handled by typecasting the matrices at key stages of the computation---during packing and/or accumulation, as needed. Several optional optimizations are also documented. Performance results gathered on a 56-core Marvell ThunderX2 and a 52-core Intel Xeon Platinum demonstrate that high performance is mostly preserved, with modest slowdowns incurred from unavoidable typecast instructions. The mixed-datatype implementation confirms that combinatoric intractability is avoided, with the framework relying on only two assembly microkernels to implement 128 datatype combinations.

قيم البحث

اقرأ أيضاً

218 - Weifeng Liu , Brian Vinter 2015
General sparse matrix-matrix multiplication (SpGEMM) is a fundamental building block for numerous applications such as algebraic multigrid method (AMG), breadth first search and shortest path problem. Compared to other sparse BLAS routines, an effici ent parallel SpGEMM implementation has to handle extra irregularity from three aspects: (1) the number of nonzero entries in the resulting sparse matrix is unknown in advance, (2) very expensive parallel insert operations at random positions in the resulting sparse matrix dominate the execution time, and (3) load balancing must account for sparse data in both input matrices. In this work we propose a framework for SpGEMM on GPUs and emerging CPU-GPU heterogeneous processors. This framework particularly focuses on the above three problems. Memory pre-allocation for the resulting matrix is organized by a hybrid method that saves a large amount of global memory space and efficiently utilizes the very limited on-chip scratchpad memory. Parallel insert operations of the nonzero entries are implemented through the GPU merge path algorithm that is experimentally found to be the fastest GPU merge approach. Load balancing builds on the number of necessary arithmetic operations on the nonzero entries and is guaranteed in all stages. Compared with the state-of-the-art CPU and GPU SpGEMM methods, our approach delivers excellent absolute performance and relative speedups on various benchmarks multiplying matrices with diverse sparsity structures. Furthermore, on heterogeneous processors, our SpGEMM approach achieves higher throughput by using re-allocatable shared virtual memory. The source code of this work is available at https://github.com/bhSPARSE/Benchmark_SpGEMM_using_CSR
As the ratio between the rate of computation and rate with which data can be retrieved from various layers of memory continues to deteriorate, a question arises: Will the current best algorithms for computing matrix-matrix multiplication on future CP Us continue to be (near) optimal? This paper provides compelling analytical and empirical evidence that the answer is no. The analytical results guide us to a new family of algorithms of which the current state-of-the-art Gotos algorithm is but one member. The empirical results, on architectures that were custom built to reduce the amount of bandwidth to main memory, show that under different circumstances, different and particular members of the family become more superior. Thus, this family will likely start playing a prominent role going forward.
We dispel with street wisdom regarding the practical implementation of Strassens algorithm for matrix-matrix multiplication (DGEMM). Conventional wisdom: it is only practical for very large matrices. Our implementation is practical for small matrices . Conventional wisdom: the matrices being multiplied should be relatively square. Our implementation is practical for rank-k updates, where k is relatively small (a shape of importance for libraries like LAPACK). Conventional wisdom: it inherently requires substantial workspace. Our implementation requires no workspace beyond buffers already incorporated into conventional high-performance DGEMM implementations. Conventional wisdom: a Strassen DGEMM interface must pass in workspace. Our implementation requires no such workspace and can be plug-compatible with the standard DGEMM interface. Conventional wisdom: it is hard to demonstrate speedup on multi-core architectures. Our implementation demonstrates speedup over conventional DGEMM even on an Intel(R) Xeon Phi(TM) coprocessor utilizing 240 threads. We show how a distributed memory matrix-matrix multiplication also benefits from these advances.
We present algorithms for real and complex dot product and matrix multiplication in arbitrary-precision floating-point and ball arithmetic. A low-overhead dot product is implemented on the level of GMP limb arrays; it is about twice as fast as previo us code in MPFR and Arb at precision up to several hundred bits. Up to 128 bits, it is 3-4 times as fast, costing 20-30 cycles per term for floating-point evaluation and 40-50 cycles per term for balls. We handle large matrix multiplications even more efficiently via blocks of scaled integer matrices. The new methods are implemented in Arb and significantly speed up polynomial operations and linear algebra.
Matrix multiplication (GEMM) is a core operation to numerous scientific applications. Traditional implementations of Strassen-like fast matrix multiplication (FMM) algorithms often do not perform well except for very large matrix sizes, due to the in creased cost of memory movement, which is particularly noticeable for non-square matrices. Such implementations also require considerable workspace and modifications to the standard BLAS interface. We propose a code generator framework to automatically implement a large family of FMM algorithms suitable for multiplications of arbitrary matrix sizes and shapes. By representing FMM with a triple of matrices [U,V,W] that capture the linear combinations of submatrices that are formed, we can use the Kronecker product to define a multi-level representation of Strassen-like algorithms. Incorporating the matrix additions that must be performed for Strassen-like algorithms into the inherent packing and micro-kernel operations inside GEMM avoids extra workspace and reduces the cost of memory movement. Adopting the same loop structures as high-performance GEMM implementations allows parallelization of all FMM algorithms with simple but efficient data parallelism without the overhead of task parallelism. We present a simple performance model for general FMM algorithms and compare actual performance of 20+ FMM algorithms to modeled predictions. Our implementations demonstrate a performance benefit over conventional GEMM on single core and multi-core systems. This study shows that Strassen-like fast matrix multiplication can be incorporated into libraries for practical use.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا