ﻻ يوجد ملخص باللغة العربية
In the course of its evolution, a black hole (BH) accretes gas from a wide range of directions. Given a random accretion event, the typical angular momentum of an accretion disc would be tilted by $sim$60$^circ$ relative to the BH spin. Misalignment causes the disc to precess at a rate that increases with BH spin and tilt angle. We present the first general-relativistic magnetohydrodynamic (GRMHD) simulations spanning a full precession period of highly tilted (60$^circ$), moderately thin ($h/r=0.1$) accretion discs around a rapidly spinning ($asimeq0.9$) BH. While the disc and jets precess in phase, we find that the corona, sandwiched between the two, lags behind by $gtrsim 10^{circ}$. For spectral models of BH accretion, the implication is that hard non-thermal (corona) emission lags behind the softer (disc) emission, thus potentially explaining some properties of the hard energy lags seen in Type-C low frequency quasi-periodic oscillations in X-Ray binaries. While strong jets are unaffected by this disc-corona lag, weak jets stall when encountering the lagging corona at distances $r sim 100$ black hole radii. This interaction may quench large-scale jet formation.
Luminous active galactic nuclei (AGN) and X-Ray binaries (XRBs) tend to be surrounded by geometrically thin, radiatively cooled accretion discs. According to both theory and observations, these are -- in many cases -- highly misaligned with the black
Global three dimensional magnetohydrodynamic (MHD) simulations of turbulent accretion disks are presented which start from fully equilibrium initial conditions in which the magnetic forces are accounted for and the induction equation is satisfied. Th
The episodic dynamics of the magnetic eruption of a spinning black hole (BH) accretion disks and its associated intense shapeup of their jets is studied via three-dimensional general-relativistic magnetohydrodynamics (GRMHD). The embedded magnetic fi
Accretion is an essential physical process in black-hole X-ray binaries (BHXRBs) and active galactic nuclei. The properties of accretion flows and their radiation were originally considered to be uniquely determined by the mass accretion rate of the
Gas falling into a black hole (BH) from large distances is unaware of BH spin direction, and misalignment between the accretion disc and BH spin is expected to be common. However, the physics of tilted discs (e.g., angular momentum transport and jet