ﻻ يوجد ملخص باللغة العربية
Denoising stationary process $(X_i)_{i in Z}$ corrupted by additive white Gaussian noise is a classic and fundamental problem in information theory and statistical signal processing. Despite considerable progress in designing efficient denoising algorithms, for general analog sources, theoretically-founded computationally-efficient methods are yet to be found. For instance in denoising $X^n$ corrupted by noise $Z^n$ as $Y^n=X^n+Z^n$, given the full distribution of $X^n$, a minimum mean square error (MMSE) denoiser needs to compute $E[X^n|Y^n]$. However, for general sources, computing $E[X^n|Y^n]$ is computationally very challenging, if not infeasible. In this paper, starting by a Bayesian setup, where the source distribution is fully known, a novel denoising method, namely, quantized maximum a posteriori (Q-MAP) denoiser, is proposed and its asymptotic performance in the high signal to noise ratio regime is analyzed. Both for memoryless sources, and for structured first-order Markov sources, it is shown that, asymptotically, as $sigma$ converges to zero, ${1over sigma^2}E[(X_i-hat{X}^{rm Q-MAP}_i)^2]$ achieved by Q-MAP denoiser converges to the information dimension of the source. For the studied memoryless sources, this limit is known to be optimal. A key advantage of the Q-MAP denoiser is that, unlike an MMSE denoiser, it highlights the key properties of the source distribution that are to be used in its denoising. This property dramatically reduces the computational complexity of approximating the solution of the Q-MAP denoiser. Additionally, it naturally leads to a learning-based denoiser. Using ImageNet database for training, initial simulation results exploring the performance of such a learning-based denoiser in image denoising are presented.
We draw a random subset of $k$ rows from a frame with $n$ rows (vectors) and $m$ columns (dimensions), where $k$ and $m$ are proportional to $n$. For a variety of important deterministic equiangular tight frames (ETFs) and tight non-ETF frames, we co
While two hidden Markov process (HMP) resp. quantum random walk (QRW) parametrizations can differ from one another, the stochastic processes arising from them can be equivalent. Here a polynomial-time algorithm is presented which can determine equiva
Turbo compressed sensing (Turbo-CS) is an efficient iterative algorithm for sparse signal recovery with partial orthogonal sensing matrices. In this paper, we extend the Turbo-CS algorithm to solve compressed sensing problems involving more general s
In this study, we generalize a problem of sampling a scalar Gauss Markov Process, namely, the Ornstein-Uhlenbeck (OU) process, where the samples are sent to a remote estimator and the estimator makes a causal estimate of the observed realtime signal.
We study a structured variant of the multi-armed bandit problem specified by a set of Bernoulli distributions $ u != !( u_{a,b})_{a in mathcal{A}, b in mathcal{B}}$ with means $(mu_{a,b})_{a in mathcal{A}, b in mathcal{B}}!in![0,1]^{mathcal{A}timesm