ترغب بنشر مسار تعليمي؟ اضغط هنا

Gapless Kitaev Spin Liquid to Classical String Gas through Tensor Networks

77   0   0.0 ( 0 )
 نشر من قبل Hyun-Yong Lee
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a framework for understanding the gapless Kitaev spin liquid (KSL) in the language of tensor network(TN). Without introducing Majorana fermion, most of the features of the KSL including the symmetries, gauge structure, criticality and vortex-freeness are explained in a compact TN representation. Our construction reveals a hidden string gas structure of the KSL. With only two variational parameters to adjust, we obtain an accurate KSL ansatz with the bond dimension D = 8 in a compact form, where the energy is about 0.007% higher than the exact one. In addition, the opening of gap and non-Abelian phase driven by a magnetic field are naturally understood in our construction.



قيم البحث

اقرأ أيضاً

Periodically driven quantum matter can realize exotic dynamical phases. In order to understand how ubiquitous and robust these phases are, it is pertinent to investigate the heating dynamics of generic interacting quantum systems. Here we study the t hermalization in a periodically-driven generalized Sachdev-Ye-Kitaev (SYK)-model, which realizes a crossover from a heavy Fermi liquid (FL) to a non-Fermi liquid (NFL) at a tunable energy scale. Developing an exact field theoretic approach, we determine two distinct regimes in the heating dynamics. While the NFL heats exponentially and thermalizes rapidly, we report that the presence of quasi-particles in the heavy FL obstructs heating and thermalization over comparatively long time scales. Prethermal high-frequency dynamics and possible experimental realizations of non-equilibrium SYK physics are discussed as well.
We propose and analyze a generalization of the Kitaev chain for fermions with long-range $p$-wave pairing, which decays with distance as a power-law with exponent $alpha$. Using the integrability of the model, we demonstrate the existence of two type s of gapped regimes, where correlation functions decay exponentially at short range and algebraically at long range ($alpha > 1$) or purely algebraically ($alpha < 1$). Most interestingly, along the critical lines, long-range pairing is found to break conformal symmetry for sufficiently small $alpha$. This is accompanied by a violation of the area law for the entanglement entropy in large parts of the phase diagram in the presence of a gap, and can be detected via the dynamics of entanglement following a quench. Some of these features may be relevant for current experiments with cold atomic ions.
Recent proposals for spin-1 Kitaev materials, such as honeycomb Ni oxides with heavy elements of Bi and Sb, have shown that these compounds naturally give rise to antiferromagnetic (AFM) Kitaev couplings. Conceptual interest in such AFM Kitaev system s has been sparked by the observation of a transition to a gapless $U(1)$ spin liquid at intermediate field strengths in the AFM spin-1/2 Kitaev model. However, all hitherto known spin-1/2 Kitaev materials exhibit ferromagnetic bond-directional exchanges. Here we discuss the physics of the spin-1 Kitaev model in a magnetic field and show, by extensive numerical analysis, that for AFM couplings it exhibits an extended gapless quantum spin liquid at intermediate field strengths. The close analogy to its spin-1/2 counterpart suggests that this gapless spin liquid is a $U(1)$ spin liquid with a neutral Fermi surface, that gives rise to enhanced thermal transport signatures.
Classical reversible cellular automata (CAs), which describe the discrete-time dynamics of classical degrees of freedom in a finite state-space, can exhibit exact, nonthermal quantum eigenstates despite being classically chaotic. We show that every c lassical CA defines a family of generically non-integrable, periodically-driven (Floquet) quantum dynamics with exact, nonthermal eigenstates. These Floquet dynamics are nonergodic in the sense that certain product states on a periodic classical orbit fail to thermalize, while generic initial states thermalize as expected in a quantum chaotic system. We demonstrate that some signatures of these effects can be probed in quantum simulators based on Rydberg atoms in the blockade regime. These results establish classical CAs as parent models for a class of quantum chaotic systems with rare nonthermal eigenstates.
We investigate the ground states of spin models defined on networks that we imprint (e.g. non-complex random networks like Erdos-Renyi or complex networks like Watts-Strogatz, and Barabasi-Albert), and their response to decohering processes which we model with network attacks. We quantify the complexity of these ground states, and their response to the attacks, by calculating distributions of network measures of an emergent network whose link weights are the pairwise mutual information between spins. We focus on attacks which projectively measure spins. We find that the emergent networks in the ground state do not satisfy the usual criteria for complexity, and their average properties are captured well by a single dimensionless parameter in the Hamiltonian. While the response of classical networks to attacks is well-studied, where classical complex networks are known to be more robust to random attacks than random networks, we find counterintuitive results for our quantum networks. We find that the ground states for Hamiltonians defined on different classes of imprinted networks respond similarly to all our attacks, and the attacks rescale the average properties of the emergent network by a constant factor. Mean field theory explains these results for relatively dense networks, but we also find the simple rescaling behavior away from the regime of validity of mean field theory. Our calculations indicate that complex spin networks are not more robust to projective measurement attacks, and presumably also other quantum attacks, than non-complex spin networks, in contrast to the classical case. Understanding the response of the spin networks to decoherence and attacks will have applications in understanding the physics of open quantum systems, and in designing robust complex quantum systems, possibly even a robust quantum Internet in the long run, that is maximally resistant to decoherence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا