ﻻ يوجد ملخص باللغة العربية
Cone-beam computed tomography (CBCT) offers advantages over conventional fan-beam CT in that it requires a shorter time and less exposure to obtain images. CBCT has found a wide variety of applications in patient positioning for image-guided radiation therapy, extracting radiomic information for designing patient-specific treatment, and computing fractional dose distributions for adaptive radiation therapy. However, CBCT images suffer from low soft-tissue contrast, noise, and artifacts compared to conventional fan-beam CT images. Therefore, it is essential to improve the image quality of CBCT. In this paper, we propose a synthetic approach to translate CBCT images with deep neural networks. Our method requires only unpaired and unaligned CBCT images and planning fan-beam CT (PlanCT) images for training. Once trained, 3D reconstructed CBCT images can be directly translated to high-quality PlanCT-like images. We demonstrate the effectiveness of our method with images obtained from 24 prostate patients, and we provide a statistical and visual comparison. The image quality of the translated images shows substantial improvement in voxel values, spatial uniformity, and artifact suppression compared to those of the original CBCT. The anatomical structures of the original CBCT images were also well preserved in the translated images. Our method enables more accurate adaptive radiation therapy, and opens up new applications for CBCT that hinge on high-quality images.
Computed tomography (CT) to cone-beam computed tomography (CBCT) deformable image registration (DIR) is a crucial step in adaptive radiation therapy. Current intensity-based registration algorithms, such as demons, may fail in the context of CT-CBCT
Patient respiratory signal associated with the cone beam CT (CBCT) projections is important for lung cancer radiotherapy. In contrast to monitoring an external surrogate of respiration, such signal can be extracted directly from the CBCT projections.
Commercial iterative reconstruction techniques on modern CT scanners target radiation dose reduction but there are lingering concerns over their impact on image appearance and low contrast detectability. Recently, machine learning, especially deep le
Thanks to large-scale labeled training data, deep neural networks (DNNs) have obtained remarkable success in many vision and multimedia tasks. However, because of the presence of domain shift, the learned knowledge of the well-trained DNNs cannot be
Despite the widespread availability of in-treatment room cone beam computed tomography (CBCT) imaging, due to the lack of reliable segmentation methods, CBCT is only used for gross set up corrections in lung radiotherapies. Accurate and reliable auto