ﻻ يوجد ملخص باللغة العربية
We improve the dynamical black hole (BH) mass estimates in three nearby low-mass early-type galaxies--NGC 205, NGC 5102, and NGC 5206. We use new hst/STIS spectroscopy to fit the star formation histories of the nuclei in these galaxies, and use these measurements to create local color--mass-to-light ratio (ml) relations. We then create new mass models from hst~imaging and combined with adaptive optics kinematics, we use Jeans dynamical models to constrain their BH masses. The masses of the central BHs in NGC 5102 and NGC 5206 are both below one million solar masses and are consistent with our previous estimates, $9.12_{-1.53}^{+1.84}times10^5$Msun~and $6.31_{-2.74}^{+1.06}times10^5$Msun~(3$sigma$ errors), respectively. However, for NGC 205, the improved models suggest the presence of a BH for the first time, with a best-fit mass of $6.8_{-6.7}^{+95.6}times10^3$Msun~(3$sigma$ errors). This is the least massive central BH mass in a galaxy detected using any method. We discuss the possible systematic errors of this measurement in detail. Using this BH mass, the existing upper limits of both X-ray, and radio emissions in the nucleus of NGC 205 suggest an accretion rate $lesssim$$10^{-5}$ of the Eddington rate. We also discuss the color--mleff~relations in our nuclei and find that the slopes of these vary significantly between nuclei. Nuclei with significant young stellar populations have steeper color--mleff~relations than some previously published galaxy color--mleff~relations.
We present our mass estimate of the central black hole in the isolated spiral galaxy NGC 4414. Using natural guide star adaptive optics assisted observations with the Gemini Near-Infrared Integral Field Spectrometer (NIFS) and the natural seeing Gemi
Reverberation mapping methods have been used to measure masses in about three dozen AGNs. The consistency of the virial masses computed from line widths and time delays, the relationship between black hole mass and host-galaxy stellar bulge velocity
Using different kinds of velocity tracers derived from the broad H$beta$ profile (in the mean or rms spectrum) and the corresponding virial factors $f$, the central supermassive black hole (SMBH) masses ($M_{rm BH}$) are calculated for a compiled sam
NGC 3621 is a late-type (Sd) spiral galaxy with an active nucleus, previously detected through mid-infrared [Ne V] line emission. Archival Hubble Space Telescope (HST) images reveal that the galaxy contains a bright and compact nuclear star cluster.
The mass of a supermassive black hole ($M_mathrm{BH}$) is a fundamental property that can be obtained through observational methods. Constraining $M_mathrm{BH}$ through multiple methods for an individual galaxy is important for verifying the accuracy