ﻻ يوجد ملخص باللغة العربية
We study the optical properties of tetravalent vanadium impurities in 4H silicon carbide (4H SiC). Emission from two crystalline sites is observed at wavelengths of 1.28 mum and 1.33 mum, with optical lifetimes of 163 ns and 43 ns. Group theory and ab initio density functional supercell calculations enable unequivocal site assignment and shed light on the spectral features of the defects. We conclude with a brief outlook on applications in quantum photonics.
Solid state quantum emitters with spin registers are promising platforms for quantum communication, yet few emit in the narrow telecom band necessary for low-loss fiber networks. Here we create and isolate near-surface single vanadium dopants in sili
Transition metal ions provide a rich set of optically active defect spins in wide bandgap semiconductors. Chromium (Cr4+) in silicon-carbide (SiC) produces a spin-1 ground state with a narrow, spectrally isolated, spin-selective, near-telecom optical
Neutrally charged divacancies in silicon carbide (SiC) are paramagnetic color centers whose long coherence times and near-telecom operating wavelengths make them promising for scalable quantum communication technologies compatible with existing fiber
Silicon carbide has recently been developed as a platform for optically addressable spin defects. In particular, the neutral divacancy in the 4H polytype displays an optically addressable spin-1 ground state and near-infrared optical emission. Here,
Sensing electric fields with high sensitivity, high spatial resolution and at radio frequencies can be challenging to realize. Recently, point defects in silicon carbide have shown their ability to measure local electric fields by optical charge conv