ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent insights on the penumbra formation process

85   0   0.0 ( 0 )
 نشر من قبل Mariarita Murabito
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using high-resolution spectropolarimetric data acquired by textit{IBIS}, as well as textit{SDO}/HMI observations, we studied the penumbra formation in AR NOAA 11490 and in a sample of twelve ARs appeared on the solar disk on 2011 and 2012, which were characterized by $beta$-type magnetic field configuration. The results show that the onset of the classical Evershed flow occurs in a very short time scale, 1-3 hours. Studying the formation of the first penumbral sector around the following proto-spot, we found that a stable penumbra forms in the area facing the opposite polarity, which appears to be co-spatial with an AFS, i.e. in a flux emergence region, in contrast with the results of cite{Schlichenmaier2010} concerning the leading polarity of AR NOAA 11490. Conversely, analyzing the sample of twelve ARs, we noticed that there is not a preferred location for the formation of the first penumbral sector. We also observed before the penumbra formation an inverse Evershed flow, which changes its sign when the penumbra appears. This confirms the observational evidence that the appearance of the penumbral filaments is correlated with the transition from the inverse Evershed to the classical Evershed flow. Furthermore, the analysis suggests that the time needed to form the penumbra may be related to the location where the penumbra first appears. New high-resolution observations, like those that will be provided by the European Solar Telescope, are expected to increase our understanding of the penumbra formation process.


قيم البحث

اقرأ أيضاً

We describe the disappearance of a sector of sunspot penumbra and its restoring process observed in the preceding sunspot of active region NOAA 12348. The evolution of the magnetic field and the plasma flows support the idea that the penumbra forms d ue to a change of inclination of the magnetic field of the canopy. Moving magnetic features have been observed during the disintegration phase of that sector of sunspot penumbra. During the restoring phase we have not observed any magnetic flux emergence around the sunspot. The restoring process of the penumbra sector completed in about 72 hours and it was accompanied by the transition from the counter-Evershed flow to the classical Evershed flow. The inversion of photospheric spectropolarimetric measurements taken by IBIS allowed us to reconstruct how the uncombed configuration of the magnetic field forms during the new settlement of the penumbra, i.e., the vertical component of the magnetic field seems to be progressively replaced by some horizontal field lines, corresponding to the intra-spines.
We studied the variations of line-of-sight photospheric plasma flows during the formation phase of the penumbra around a pore in Active Region NOAA 11490. We used a high spatial, spectral, and temporal resolution data set acquired by the Interferomet ric BIdimensional Spectrometer (IBIS) operating at the NSO/Dunn Solar Telescope as well as data taken by the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory satellite (SDO/HMI). Before the penumbra formed we observed a redshift of the spectral line in the inner part of the annular zone surrounding the pore as well as a blueshift of material associated with opposite magnetic polarity further away from the pore. We found that the onset of the classical Evershed flow occurs in a very short time scale -- 1-3 hours -- while the penumbra is forming. During the same time interval we found changes in the magnetic field inclination in the penumbra, with the vertical field actually changing sign near the penumbral edge, while the total magnetic field showed a significant increase, about 400 G. To explain these and other observations related to the formation of the penumbra and the onset of the Evershed flow we propose a scenario in which the penumbra is formed by magnetic flux dragged down from the canopy surrounding the initial pore. The Evershed flow starts when the sinking magnetic field dips below the solar surface and magnetoconvection sets in.
We studied the formation of the first penumbral sector around a pore in the following polarity of the Active Region (AR) NOAA 11490. We used a high spatial, spectral, and temporal resolution data set acquired by the Interferometric BIdimensional Spec trometer operating at the NSO/Dunn Solar Telescope as well as data taken by the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory satellite. On the side towards the leading polarity, elongated granules in the photosphere and an arch filament system (AFS) in the chromosphere are present, while the magnetic field shows a sea-serpent configuration, indicating a region of magnetic flux emergence. We found that the formation of a stable penumbra in the following polarity of the AR begins in the area facing the opposite polarity located below the AFS in the flux emergence region, differently from what found by Schlichenmaier and colleaguestbf. Moreover, during the formation of the first penumbral sector, the area characterized by magnetic flux density larger than 900 G and the area of the umbra increase.
The generation of magnetic flux in the solar interior and its transport to the outer solar atmosphere will be in the focus of solar physics research for the next decades. One key-ingredient is the process of magnetic flux emergence into the solar pho tosphere, and the reorganization to form the magnetic phenomena of active regions like sunspots and pores. On July 4, 2009, we observed a region of emerging magnetic flux, in which a proto-spot without penumbra forms a penumbra within some 4.5 hours. This process is documented by multi-wavelength observations at the German VTT: (a) imaging, (b) data with high resolution and temporal cadence acquired in Fe I 617.3 nm with the 2D imaging spectropolarimter GFPI, and (c) scans with the slit based spectropolarimeter TIP in Fe I 1089.6 nm. MDI contiuum maps and magnetograms are used to follow the formation of the proto-spot, and the subsequent evolution of the entire active region. During the formation of the penumbra, the area and the magnetic flux of the spot increases. The additional magnetic flux is supplied by the adjacent region of emerging magnetic flux: As emerging bipole separate, the poles of the spot polarity migrate towards the spot, and finally merge with it. As more and more flux is accumulated, a penumbra forms. From
Penumbral Microjets (PMJs) are short-lived jets found in the penumbra of sunspots, first observed in wide-band Ca H-line observations as localized brightenings, and are thought to be caused by magnetic reconnection. Earlier work on PMJs has been focu sed on smaller samples of by-eye selected events and case studies. It is our goal to present an automated study of a large sample of PMJs to place the basic statistics of PMJs on a sure footing and to study the PMJ Ca II 8542 Angstrom spectral profile in detail. High spatial resolution and spectrally well-sampled observations in the Ca II 8542 Angstrom line obtained from the Swedish 1-m Solar Telescope (SST) are reduced by a Principle Component Analysis and subsequently used in the automated detection of PMJs using the simple learning algorithm k-Nearest Neighbour. PMJ detections were verified with co-temporal Ca H-line observations. A total of 453 tracked PMJ events were found, or 4253 PMJs detections tallied over all timeframes and a detection rate of 21 events per timestep. From these, an average length, width and lifetime of 640 km, 210 km and 90 s were obtained. The average PMJ Ca II 8542 Angstrom line profile is characterized by enhanced inner wings, often in the form of one or two distinct peaks, and a brighter line core as compared to the quiet Sun average. Average blue and red peak positions were determined at -10.4 km/s and +10.2 km/s offsets from the Ca II 8542 Angstrom line core. We found several clusters of PMJ hotspots within the sunspot penumbra, where PMJ events occur in the same general area repeatedly over time. Our results indicate smaller average PMJs sizes and longer lifetimes compared to previously published values, but with statistics still in the same orders of magnitude. The investigation and analysis of the PMJ line profiles strengthen the proposed heating of PMJs to transition region temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا