ترغب بنشر مسار تعليمي؟ اضغط هنا

Turbulence decay in the density-stratified intracluster medium

325   0   0.0 ( 0 )
 نشر من قبل Xun Shi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Turbulence evolution in a density-stratified medium differs from that of homogeneous isotropic turbulence described by the Kolmogorov picture. We evaluate the degree of this effect in the intracluster medium (ICM) with hydrodynamical simulations. We find that the buoyancy effect induced by ICM density stratification introduces qualitative changes to the turbulence energy evolution, morphology, and the density fluctuation - turbulence Mach number relation, and likely explains the radial dependence of the ICM turbulence amplitude as found previously in cosmological simulations. A new channel of energy flow between the kinetic and the potential energy is opened up by buoyancy. When the gravitational potential is kept constant with time, this energy flow leaves oscillations to the energy evolution, and leads to a balanced state of the two energies where both asymptote to power-law time evolution with slopes shallower than that for the turbulence kinetic energy of homogeneous isotropic turbulence. We discuss that the energy evolution can differ more significantly from that of homogeneous isotropic turbulence when there is a time variation of the gravitational potential. Morphologically, ICM turbulence can show a layered vertical structure and large horizontal vortical eddies in the central regions with the greatest density stratification. In addition, we find that the coefficient in the linear density fluctuation - turbulence Mach number relation caused by density stratification is in general a variable with position and time.

قيم البحث

اقرأ أيضاً

98 - Ian J. Parrish 2012
In the intracluster medium (ICM) of galaxy clusters, heat and momentum are transported almost entirely along (but not across) magnetic field lines. We perform the first fully self-consistent Braginskii-MHD simulations of galaxy clusters including bot h of these effects. Specifically, we perform local and global simulations of the magnetothermal instability (MTI) and the heat-flux-driven buoyancy instability (HBI) and assess the effects of viscosity on their saturation and astrophysical implications. We find that viscosity has only a modest effect on the saturation of the MTI. As in previous calculations, we find that the MTI can generate nearly sonic turbulent velocities in the outer parts of galaxy clusters, although viscosity somewhat suppresses the magnetic field amplification. At smaller radii in cool-core clusters, viscosity can decrease the linear growth rates of the HBI. However, it has less of an effect on the HBIs nonlinear saturation, in part because three-dimensional interchange motions (magnetic flux tubes slipping past each other) are not damped by anisotropic viscosity. In global simulations of cool core clusters, we show that the HBI robustly inhibits radial thermal conduction and thus precipitates a cooling catastrophe. The effects of viscosity are, however, more important for higher entropy clusters. We argue that viscosity can contribute to the global transition of cluster cores from cool-core to non cool-core states: additional sources of intracluster turbulence, such as can be produced by AGN feedback or galactic wakes, suppress the HBI, heating the cluster core by thermal conduction; this makes the ICM more viscous, which slows the growth of the HBI, allowing further conductive heating of the cluster core and a transition to a non cool-core state.
76 - A. Cavaliere 2016
Galaxy groups differ from clusters primarily by way of their lower masses, M~10^14 M_sun vs. M~10^15 M_sun. We discuss how mass affects the thermal state of the intracluster or the intragroup medium, specifically as to their entropy levels and radial profiles. We show that entropy is produced in both cases by the continuing inflow of intergalactic gas across the system boundary into the gravitational potential well. The inflow is highly supersonic in clusters, but weakly so in groups. The former condition implies strong accretion shocks with substantial conversion of a large inflow kinetic into thermal energy, whereas the latter condition implies less effective conversion of lower energies. These features produce a conspicuous difference in entropy deposition at the current boundary. Thereafter, adiabatic compression of the hot gas into the potential well converts such time histories into radial profiles throughout a cluster or a group. In addition, in both cases a location of the system at low z in the accelerating universe or in a poor environment will starve out the inflow and the entropy production, and produce flattening or even bending down of the outer profile. We analyze in detail the sharp evidence provided by the two groups ESO 3060170 and RXJ1159+5531 that have been recently observed in X rays out to their virial radii, and find a close and detailed match with our expectations.
We consider the problem of self-regulated heating and cooling in galaxy clusters and the implications for cluster magnetic fields and turbulence. Viscous heating of a weakly collisional magnetised plasma is regulated by the pressure anisotropy with r espect to the local direction of the magnetic field. The intracluster medium is a high-beta plasma, where pressure anisotropies caused by the turbulent stresses and the consequent local changes in the magnetic field will trigger very fast microscale instabilities. We argue that the net effect of these instabilities will be to pin the pressure anisotropies at a marginal level, controlled by the plasma beta parameter. This gives rise to local heating rates that turn out to be comparable to the radiative cooling rates. Furthermore, we show that a balance between this heating and Bremsstrahlung cooling is thermally stable, unlike the often conjectured balance between cooling and thermal conduction. Given a sufficient (and probably self-regulating) supply of turbulent power, this provides a physical mechanism for mitigating cooling flows and preventing cluster core collapse. For observed density and temperature profiles, the assumed balance of viscous heating and radiative cooling allows us to predict magnetic-field strengths, turbulent velocities and turbulence scales as functions of distance from the centre. Specific predictions and comparisons with observations are given for several different clusters. Our predictions can be further tested by future observations of cluster magnetic fields and turbulent velocities.
We study supernova-driven galactic outflows as a mechanism for injecting turbulence in the intergalactic medium (IGM) far from galaxies. To this aim we follow the evolution of a 10^13 Msun galaxy along its merger tree, with carefully calibrated presc riptions for star formation and wind efficiencies. At z~3 the majority of the bubbles around galaxies are old (ages >1Gyr), i.e. they contain metals expelled by their progenitors at earlier times; their filling factor increases with time reaching about 10% at z<2. The energy deposited by these expanding shocks in the IGM is predominantly in kinetic form (mean energy density of 1 mu eV cm^-3, about 2-3 x the thermal one), which is rapidly converted in disordered motions by instabilities, finally resulting in a fully developed turbulent spectrum whose evolution is followed through a spectral transfer function approach. The derived mean IGM turbulent Doppler parameter, b_t, peaks at z~1 at about 1.5 km/s with maximum b_t = 25 km/s. The shape of the b_t distribution does not significantly evolve with redshift but undergoes a continuous shift towards lower b_t values with time, as a result of bubble aging. We find also a clear trend of decreasing b_t with N_HI and a more complex dependence on R_s resulting from the age spread of the bubbles. We have attempted a preliminary comparison with the data, hampered by the scarcity of the latter and by the challenge provided by the subtraction of peculiar and thermal motions. Finally we comment on the implications of turbulence for various cosmological studies.
The circumgalactic medium (CGM) of nearby star-forming galaxies shows clear indications of OVI absorption accompanied by little to no detectable NV absorption. This unusual spectral signature, accompanied by highly non-uniform absorption from lower i onization state species, indicates that the CGM must be viewed as a dynamic, multiphase medium, such as occurs in the presence of turbulence. Motivated by previous isotropic turbulent simulations, we carry out chemodynamical simulations of stratified media in a Navarro-Frenk-White (NFW) gravitational potential with a total mass of $10^{12}$ solar masses and turbulence that decreases radially. The simulations assume a metallicity of 0.3 solar, a redshift zero metagalatic UV background, and they track ionizations, recombinations, and species-by-species radiative cooling using the MAIHEM package. We compare a suite of ionic column densities with the COS-Halos sample of low-redshift star-forming galaxies. Turbulence with an average one-dimensional velocity dispersion approximately 40 km/s, corresponding to an energy injection rate of approximately $10^{49}$ erg/yr, produces a CGM that matches many of the observed ionic column densities and ratios. In this simulation, the NVI to OVI ratio is suppressed from its equilibrium value due to a combination of radiative cooling and cooling from turbulent mixing. This level of turbulence is consistent with expectations from observations of better constrained, higher-mass systems, and could be sustained by energy input from supernovae, gas inflows, and dynamical friction from dark matter subhalos. We also conduct a higher resolution run which yields smaller-scale structures, but remains in agreement with observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا