ترغب بنشر مسار تعليمي؟ اضغط هنا

Kondo Impurities in Two Dimensional MoS2 for Achieving Ultrahigh Thermoelectric Powerfactor

80   0   0.0 ( 0 )
 نشر من قبل Yunshan Zhao
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Local magnetic impurities arising from atomic vacancies in two-dimensional (2D) nanosheets are predicted to have a profound effect on charge transport due to resonant scattering, and provide a handle for enhancing thermoelectric properties through the Kondo effect. However, the effects of these impurities are often masked by external fluctuations and turbostratic interfaces, therefore, it is highly challenging to probe the correlation between magnetic impurities and thermoelectric parameters experimentally. In this work, we demonstrate that by placing Molybdenum Disulfide on a hexagonal Boron Nitride substrate, a colossal spin splitting of the conduction sub-band up to ~50.0 meV is observed at the sulfur vacancies, suggesting that these are local magnetic states. Transport measurements reveal a large anomalous positive Seebeck coefficient in highly conducting n type MoS2, originating from quasiparticle resonance near the Fermi level described by the Kondo effect. Furthermore, by tuning the chemical potential, a record power factor of 50mW/mK2 in low-dimensional materials was achieved. Our work shows that defect engineering of 2D materials affords a strategy for controlling Kondo impurities and tuning thermoelectric transport.



قيم البحث

اقرأ أيضاً

The anti-ferromagnetic coupling of a magnetic impurity carrying a spin with the conduction electrons spins of a host metal is the basic mechanism responsible for the increase of the resistance of an alloy such as Cu${}_{0.998}$Fe${}_{0.002}$ at low t emperature, as originally suggested by Kondo . This coupling has emerged as a very generic property of localized electronic states coupled to a continuum . The possibility to design artificial controllable magnetic impurities in nanoscopic conductors has opened a path to study this many body phenomenon in unusual situations as compared to the initial one and, in particular, in out of equilibrium situations. So far, measurements have focused on the average current. Here, we report on textit{current fluctuations} (noise) measurements in artificial Kondo impurities made in carbon nanotube devices. We find a striking enhancement of the current noise within the Kondo resonance, in contradiction with simple non-interacting theories. Our findings provide a test bench for one of the most important many-body theories of condensed matter in out of equilibrium situations and shed light on the noise properties of highly conductive molecular devices.
Understanding the interfacial electrical properties between metallic electrodes and low dimensional semiconductors is essential for both fundamental science and practical applications. Here we report the observation of thickness reduction induced cro ssover of electrical contact at Au/MoS2 interfaces. For MoS2 thicker than 5 layers, the contact resistivity slightly decreases with reducing MoS2 thickness. By contrast, the contact resistivity sharply increases with reducing MoS2 thickness below 5 layers, mainly governed by the quantum confinement effect. It is found that the interfacial potential barrier can be finely tailored from 0.3 to 0.6 eV by merely varying MoS2 thickness. A full evolution diagram of energy level alignment is also drawn to elucidate the thickness scaling effect. The finding of tailoring interfacial properties with channel thickness represents a useful approach controlling the metal/semiconductor interfaces which may result in conceptually innovative functionalities.
We report experimental and theoretical evidence of strong electron-plasmon interaction in n-doped single-layer MoS2. Angle-resolved photoemission spectroscopy (ARPES) measurements reveal the emergence of distinctive signatures of polaronic coupling i n the electron spectral function. Calculations based on many-body perturbation theory illustrate that electronic coupling to two-dimensional (2D) carrier plasmons provides an exhaustive explanation of the experimental spectral features and their energies. These results constitute compelling evidence of the formation of plasmon-induced polaronic quasiparticles, suggesting that highly-doped transition-metal dichalcogenides may provide a new platform to explore strong-coupling phenomena between electrons and plasmons in 2D.
Ballistic transport of helical edge modes in two-dimensional topological insulators is protected by time-reversal symmetry. Recently it was pointed out [1] that coupling of non-interacting helical electrons to an array of randomly anisotropic Kondo i mpurities can lead to a spontaneous breaking of the symmetry and, thus, can remove this protection. We have analyzed effects of the interaction between the electrons using a combination of the functional and the Abelian bosonization approaches. The suppression of the ballistic transport turns out to be robust in a broad range of the interaction strength. We have evaluated the renormalization of the localization length and have found that, for strong interaction, it is substantial. We have identified various regimes of the dc transport and discussed its temperature and sample size dependencies in each of the regimes.
Helical edge states of two-dimensional topological insulators show a gap in the Density of States (DOS) and suppressed conductance in the presence of ordered magnetic impurities. Here we will consider the dynamical effects on the DOS and transmission when the magnetic impurities are driven periodically. Using the Floquet formalism and Greens functions, the system properties are studied as a function of the driving frequency and the potential energy contribution of the impurities. We see that increasing the potential part closes the DOS gap for all driving regimes. The transmission gap is also closed, showing an pronounced asymmetry as a function of energy. These features indicate that the dynamical transport properties could yield valuable information about the magnetic impurities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا