ترغب بنشر مسار تعليمي؟ اضغط هنا

Breaking the Radio - Gamma-Ray Connection in Arp 220

121   0   0.0 ( 0 )
 نشر من قبل Tova Yoast-Hull
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent analyses of the gamma-ray spectrum from the ultra-luminous infrared galaxy Arp 220 have revealed a discrepancy in the cosmic ray energy injection rates derived from the gamma-rays versus the radio emission. While the observed radio emission is consistent with the star formation rate inferred from infrared observations, a significantly higher cosmic ray population is necessary to accurately model the measured gamma-ray flux. To resolve this discrepancy between the radio and gamma-ray observations, we find that we must increase the cosmic ray energy injection rate and account for an infrared optical depth greater than unity. Raising the energy injection rate naturally raises the total gamma-ray flux but also raises the radio flux unless there is also an increase in the energy loss rate for cosmic ray leptons. A optically thick medium results in an increase in energy losses via inverse Compton for cosmic ray leptons and preserves agreement with submillimeter, millimeter, and infrared wavelength observations.

قيم البحث

اقرأ أيضاً

Extragalactic cosmic ray populations are important diagnostic tools for tracking the distribution of energy in nuclei and for distinguishing between activity powered by star formation versus active galactic nuclei (AGNs). Here, we compare different d iagnostics of the cosmic ray populations of the nuclei of Arp 220 based on radio synchrotron observations and the recent gamma-ray detection. We find the gamma-ray and radio emission to be incompatible; a joint solution requires at minimum a factor of 4 - 8 times more energy coming from supernovae and a factor of 40 - 70 more mass in molecular gas than is observed. We conclude that this excess of gamma-ray flux in comparison to all other diagnostics of star-forming activity indicates that there is an AGN present that is providing the extra cosmic rays, likely in the western nucleus.
83 - M. Orienti 2015
Relativistic jets are one of the most powerful manifestations of the release of energy related to the supermassive black holes at the centre of active galactic nuclei (AGN). Their emission is observed across the entire electromagnetic spectrum, from the radio band to gamma rays. Despite decades of efforts, many aspects of the physics of relativistic jets remain elusive. In particular, the location and the mechanisms responsible for the high-energy emission and the connection of the variability at different wavelengths are among the greatest challenges in the study of AGN. Recent high resolution radio observations of flaring objects locate the high-energy emitting region downstream the jet at parsec scale distance from the central engine, posing questions on the nature of the seed photons upscattered to gamma-rays. Furthermore, monitoring campaigns of the most active blazars indicate that not all the high energy flares have the same characteristics in the various energy bands, even from the same source, making the interpretation of the mechanism responsible for the high-energy emission not trivial. Although the variability of the most luminous blazars is well explained by the shock-in-jet scenario, the sub-class of TeV emitting objects suggests a more complex emission model with velocity gradients in a structured jet. This contribution presents results obtained by recent multiwavelength campaigns of blazars aimed at studying the radio and gamma-ray connection and the physical mechanisms at the basis of the emission in these low and high energy bands.
The cores of Arp 220, the closest ultra-luminous infrared starburst galaxy, provide an opportunity to study interactions of cosmic rays under extreme conditions. In this paper, we model the populations of cosmic rays produced by supernovae in the cen tral molecular zones of both starburst nuclei. We find that ~65 - 100% of cosmic rays are absorbed in these regions due to their huge molecular gas contents, and thus, the nuclei of Arp 220 nearly complete proton calorimeters. As the cosmic ray protons collide with the interstellar medium, they produce secondary electrons that are also contained within the system and radiate synchrotron emission. Using results from chi-squared tests between the model and the observed radio spectral energy distribution, we predict the emergent gamma-ray and high-energy neutrino spectra and find the magnetic field to be at milligauss levels. Because of the extremely intense far-infrared radiation fields, the gamma-ray spectrum steepens significantly at TeV energies due to gamma-gamma absorption.
Blazars are a sub-category of radio-loud active galactic nuclei with relativistic jets pointing towards to the observer. They are well-known for their non-thermal variable emission, which practically extends over the whole electromagnetic spectrum. D espite the plethora of multi-wavelength observations, the issue about the origin of the $gamma$-ray and radio emission in blazar jets remains unsettled. Here, we construct a parametric leptonic model for studying the connection between the $gamma$-ray and radio emission in both steady-state and flaring states of blazars. Assuming that relativistic electrons are injected continuously at a fixed distance from the black hole, we numerically study the evolution of their population as it propagates to larger distances while losing energy due to expansion and radiative cooling. In this framework, $gamma$-ray photons are naturally produced at small distances (e.g. $10^{-3}$ pc) when the electrons are still very energetic, whereas the radio emission is produced at larger distances (e.g. $1$ pc), after the electrons have cooled and the emitting region has become optically thin to synchrotron self-absorption due to expansion. We present preliminary results of our numerical investigation for the steady-state jet emission and the predicted time lags between $gamma$-rays and radio during flares.
Since mid-2007 we have carried out a dedicated long-term monitoring programme at 15 GHz using the Owens Valley Radio Observatory 40 meter telescope. One of the main goals of this programme is to study the relation between the radio and gamma-ray emis sion in blazars and to use it as a tool to locate the site of high energy emission. Using this large sample of objects we are able to characterize the radio variability, and study the significance of correlations between the radio and gamma-ray bands. We find that the radio variability of many sources can be described using a simple power law power spectral density, and that when taking into account the red-noise characteristics of the light curves, cases with significant correlation are rare. We note that while significant correlations are found in few individual objects, radio variations are most often delayed with respect to the gamma-ray variations. This suggests that the gamma-ray emission originates upstream of the radio emission. Because strong flares in most known gamma-ray-loud blazars are infrequent, longer light curves are required to settle the issue of the strength of radio-gamma cross-correlations and establish confidently possible delays between the two. For this reason continuous multiwavelength monitoring over a longer time period is essential for statistical tests of jet emission models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا