ﻻ يوجد ملخص باللغة العربية
Some new properties of the chaotic signal have been implemented in communication system applications recently. However, due to the broadband property of the chaotic signal, it is very difficult for a practical transducer or antenna to convert such a broadband signal into a signal that would be suitable for practical band-limited wireless channel. Thus, the use of chaos property to improve the performance of conventional communication system without changing the system configuration becomes a critical issue in communication with chaos. In this paper, chaotic baseband waveform generated by a chaotic shaping filter is used to show that this difficulty can be overcome. The generated continuous-time chaotic waveform is proven to be topologically conjugate to a symbolic sequence, allowing the encoding of arbitrary information sequence into the chaotic waveform. A finite impulse response filter is used to replace the impulse control in order to encode information into the chaotic signal, simplifying the algorithm for high speed communication. A wireless communication system is being proposed using the chaotic signal as the baseband waveform, which is compatible with the general wireless communication platform. The matched filter and decoding method, using chaos properties, enhance the communication system performance. The Bit Error Rate (BER) and computational complexity performances of the proposed wireless communication system are analyzed and compared with the conventional wireless systems. The results show that the proposed chaotic baseband waveform of our wireless communication method has better BER performance in both the static and time-varying wireless channels. The experimental results, based on the commonly-used wireless open-access research platform, show that the BER of the proposed method is superior to the conventional method under a practical wireless multipath channel.
To retrieve the information from the serious distorted received signal is the key challenge of communication signal processing. The chaotic baseband communication promises theoretically to eliminate the inter-symbol interference (ISI), however, it ne
In some Internet of Things (IoT) applications, multi-path propagation is a main constraint of communication channel. Recently, the chaotic baseband wireless communication system (CBWCS) is promising to eliminate the inter-symbol interference (ISI) ca
Utilization of chaotic signals for covert communications remains a very promising practical application. Multiple studies indicated that the major shortcoming of recently proposed chaos-based communication schemes is their susceptibility to noise and
The optical wireless communication (OWC) with the intensity modulation (IM), requires the modulated radio frequency (RF) signal to be real and non-negative. To satisfy the requirements, this paper proposes two types of mixed orthogonal frequency divi
The invariance of the Lyapunov exponent of a chaotic signal as it propagates along a wireless transmission channel provides a theoretical base for the application of chaos in wireless communication. In additive Gaussian channel, the chaotic signal is