ﻻ يوجد ملخص باللغة العربية
Successive magnetic phase transitions at $T_1$=17.5 K and $T_2$=18.5 K in Gd$_3$Ru$_4$Al$_{12}$, with a distorted kagome lattice of Gd ions, is studied using resonant X-ray diffraction with polarization analysis. It has been suggested that in this compound the $S=7/2$ spins on the nearest-neighbor Gd-triangle form a ferromagnetic trimer and the Gd lattice can be effectively considered as an antiferromagnetic triangular lattice of $S=21/2$ spin trimers [S. Nakamura et al., Phys. Rev. B 98, 054410 (2018)]. We show that the magnetic order in this system is described by an incommensurate wave vector $q$~(0.27, 0, 0), which varies slightly with temperature. In the low temperature phase below $T_1$, the experimental results are well explained by considering that the spin trimers form a helical order with both the $c$-axis and $c$-plane components. In the intermediate phase above $T_1$, the $c$-axis component vanishes, resulting in a sinusoical structure within the $c$-plane. The sinusoidal-helical transition at $T_1$ can be regarded as an ordering of chiral degree of freedom, which is degenerate in the intermediate phase.
Rare $d$-electron derived heavy-fermion properties of the solid-solution series LaCu$_3$Ru$_x$Ti$_{4-x}$O$_{12}$ were studied for $1 leq x leq 4$ by resistivity, susceptibility, specific-heat measurements, and magnetic-resonance techniques. The pure
We have performed resonant X-ray diffraction experiments on the antiferromagnet GdRu$_{2}$Al$_{10}$ and have clarified that the magnetic structure in the ordered state is cycloidal with the moments lying in the $bc$ plane and propagating along the $b
Element-specific x-ray resonant magnetic scattering investigations were performed to determine the magnetic structure of Eu in EuRh2As2. In the temperature range from 46 K down to 6 K, an incommensurate antiferromagnetic (ICM)structure with a tempera
Under zero magnetic field, a quadrupolar order parameter at q_Q=(1/2,1/2,1/2) in a typical antiferro-quadrupole (AFQ) ordering compound CeB6 has been observed for the first time by means of a resonant X-ray scattering (RXS) te chnique. The RXS is obs
We have employed the x-ray resonant magnetic scattering (XRMS) technique at the Ru $L_2$ edge of the Ba(Fe$_{1-x}$Ru$_x$)$_2$As$_2$ ($x = 0.205$) superconductor. We show that pronounced resonance enhancements at the Ru $L_2$ edge are observed at the