ﻻ يوجد ملخص باللغة العربية
We investigate the properties of electromagnetic fields in isobaric $_{44}^{96}textrm{Ru}+,_{44}^{96}textrm{Ru}$ and $_{40}^{96}textrm{Zr}+,_{40}^{96}textrm{Zr}$ collisions at $sqrt{s}$ = 200 GeV by using a multiphase transport model, with special emphasis on the correlation between magnetic field direction and participant plane angle $Psi_{2}$ (or spectator plane angle $Psi_{2}^{rm SP}$), i.e. $langle{rm cos} 2(Psi_B - Psi_{2})rangle$ [or $langle{rm cos} 2(Psi_B - Psi_{2}^{rm SP})rangle$]. We confirm that the magnetic fields of $_{44}^{96}textrm{Ru}+,_{44}^{96}textrm{Ru}$ collisions are stronger than those of $_{40}^{96}textrm{Zr}+,_{40}^{96}textrm{Zr}$ collisions due to their larger proton fraction. We find that the deformation of nuclei has a non-negligible effect on $langle{rm cos} 2(Psi_B - Psi_{2})rangle$ especially in peripheral events. Because the magnetic-field direction is more strongly correlated with $Psi_{2}^{rm SP}$ than with $Psi_{2}$, the relative difference of the chiral magnetic effect observable with respect to $Psi_{2}^{rm SP}$ is expected to be able to reflect much cleaner information about the chiral magnetic effect with less influences of deformation.
The isobaric collision experiment at RHIC provides the unique opportunity to detect the possible signal of Chiral Magnetic Effect (CME) in heavy ion collisions. The idea is to contrast the correlation observables of the two colliding systems that sup
We give a numerical simulation of the generation of the magnetic field and the charge-separation signal due to the chiral magnetic effect (CME) --- the induction of an electric current by the magnetic field in a parity-odd matter --- in the collision
The quark-gluon matter produced in relativistic heavy-ion collisions may contain local domains in which P and CP symmetries are not preserved. When coupled with an external magnetic field, such P- and CP-odd domains will generate electric currents al
Isobaric $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_{40}$Zr+$^{96}_{40}$Zr collisions at $sqrt{s_{_{NN}}}=200$ GeV have been conducted at the Relativistic Heavy Ion Collider to circumvent the large flow-induced background in searching for the chiral ma
We first compare different approaches to estimates of the magnitude of the chiral magnetic effect in relativistic heavy ion collisions and show that their main difference lies in the assumptions on the length of persistence of the magnetic field gene