ﻻ يوجد ملخص باللغة العربية
In this paper we present one-loop results for the renormalization of nonlocal quark bilinear operators, containing a staple-shaped Wilson line, in both continuum and lattice regularizations. The continuum calculations were performed in dimensional regularization, and the lattice calculations for the Wilson/clover fermion action and for a variety of Symanzik-improved gauge actions. We extract the strength of the one-loop linear and logarithmic divergences (including cusp divergences), which appear in such nonlocal operators; we identify the mixing pairs which occur among some of these operators on the lattice, and we calculate the corresponding mixing coefficients. We also provide the appropriate RI-like scheme, which disentangles this mixing nonperturbatively from lattice simulation data, as well as the one-loop expressions of the conversion factors, which turn the lattice data to the MS-bar scheme. Our results can be immediately used for improving recent nonperturbative investigations of transverse momentum-dependent distribution functions (TMDs) on the lattice. Finally, extending our perturbative study to general Wilson-line lattice operators with n cusps, we present results for their renormalization factors, including identification of mixing and determination of the corresponding mixing coefficients, based on our results for the staple operators.
Quark bilinear operators with staple-shaped Wilson lines are used to study transverse-momentum-dependent parton distribution functions (TMDPDFs) from lattice quantum chromodynamics (QCD). Here, the renormalization factors for the isovector operators,
We study 4-dimensional SQCD with gauge group SU(Nc) and Nf flavors of chiral supermultiplets on the lattice. We perform extensive calculations of matrix elements and renormalization factors of composite operators in Perturbation Theory. In particular
We have technically improved the non-perturbative renormalization method, proposed by Martinelli et al., by using quark momentum sources and sinks. Composite two-fermion operators up to three derivatives have been measured for Wilson fermions and She
We discuss a specific cut-off effect which appears in applying the non-perturbative RI/MOM scheme to compute the renormalization constants. To illustrate the problem a Dirac operator satisfying the Ginsparg-Wilson relation is used, but the arguments
In this paper, we present one- and two-loop results for the renormalization of the gluon and quark gauge-invariant operators which appear in the definition of the QCD energy-momentum tensor, in dimensional regularization. To this end, we consider a v