For a general understanding of the physics involved in the star formation process, measurements of physical parameters such as temperature and density are indispensable. The chemical and physical properties of dense clumps of molecular clouds are str
ongly affected by the kinetic temperature. Therefore, this parameter is essential for a better understanding of the interstellar medium. Formaldehyde, a molecule which traces the entire dense molecular gas, appears to be the most reliable tracer to directly measure the gas kinetic temperature.We aim to determine the kinetic temperature with spectral lines from formaldehyde and to compare the results with those obtained from ammonia lines for a large number of massive clumps.Three 218 GHz transitions (JKAKC=303-202, 322-221, and 321-220) of para-H2CO were observed with the 15m James Clerk Maxwell Telescope (JCMT) toward 30 massive clumps of the Galactic disk at various stages of high-mass star formation. Using the RADEX non-LTE model, we derive the gas kinetic temperature modeling the measured para-H2CO 322-221/303-202and 321-220/303-202 ratios. The gas kinetic temperatures derived from the para-H2CO (321-220/303-202) line ratios range from 30 to 61 K with an average of 46 K. A comparison of kinetic temperature derived from para-H2CO, NH3, and the dust emission indicates that in many cases para-H2CO traces a similar kinetic temperature to the NH3 (2,2)/(1,1) transitions and the dust associated with the HII regions. Distinctly higher temperatures are probed by para-H2CO in the clumps associated with outflows/shocks. Kinetic temperatures obtained from para-H2CO trace turbulence to a higher degree than NH3 (2,2)/(1,1) in the massive clumps. The non-thermal velocity dispersions of para-H2CO lines are positively correlated with the gas kinetic temperature. The massive clumps are significantly influenced by supersonic non-thermal motions.
We have used catalogues from several Galactic plane surveys and dedicated observations to investigate the relationship between various maser species and Galactic star forming clumps, as identified by the ATLASGAL survey. The maser transitions of inte
rest are the 6.7 & 12.2 GHz methanol masers, 22.2 GHz water masers, and the masers emitting in the four ground-state hyperfine structure transitions of hydroxyl. We find clump association rates for the water, hydroxyl and methanol masers to be 56, 39 and 82 per cent respectively, within the Galactic longitude range of 60{deg} > $l$ > -60{deg}. We investigate the differences in physical parameters between maser associated clumps and the full ATLASGAL sample, and find that clumps coincident with maser emission are more compact with increased densities and luminosities. However, we find the physical conditions within the clumps are similar for the different maser species. A volume density threshold of $n$(H$_{2}$) > 10$^{4.1}$ cm$^{-3}$ for the 6.7 GHz methanol maser found in our previous study is shown to be consistent across for all maser species investigated. We find limits that are required for the production of maser emission to be 500 L$_{odot}$ and 6 M$_{odot}$ respectively. The evolutionary phase of maser associated clumps is investigated using the L/M ratio of clumps coincident with maser emission, and these have similar L/M ranges (~10$^{0.2}$ - 10$^{2.7}$ L$_{odot}$/M$_{odot}$) regardless of the associated transitions. This implies that the conditions required for the production of maser emission only occur during a relatively narrow period during a stars evolution. Lower limits of the statistical lifetimes for each maser species are derived, ranging from ~0.4 - 2 x 10$^{4}$ yrs and are in good agreement with the straw man evolutionary model previously presented.
We have conducted a search for ionized gas at 3.6 cm, using the Very Large Array, towards 31 Galactic intermediate- and high-mass clumps detected in previous millimeter continuum observations. In the 10 observed fields, 35 HII regions are identified,
of which 20 are newly discovered. Many of the HII regions are multiply peaked indicating the presence of a cluster of massive stars. We find that the ionized gas tends to be associated towards the millimeter clumps; of the 31 millimeter clumps observed, 9 of these appear to be physically related to ionized gas, and a further 6 have ionized gas emission within 1. For clumps with associated ionized gas, the combined mass of the ionizing massive stars is compared to the clump masses to provide an estimate of the instantaneous star formation efficiency. These values range from a few percent to 25%, and have an average of 7 +/- 8%. We also find a correlation between the clump mass and the mass of the ionizing massive stars within it, which is consistent with a power law. This result is comparable to the prediction of star formation by competitive accretion that a power law relationship exists between the mass of the most massive star in a cluster and the total mass of the remaining stars.