ﻻ يوجد ملخص باللغة العربية
We study the observational consequences of several unknown properties of Population III (Pop III) stars using large-scale cosmological simulations that include a subgrid model to track the unresolved mixing of pollutants. Varying the value of the critical metallicity that marks the boundary between Pop III and Population II (Pop II) star formation across 2 dex has a negligible effect on the fraction of Pop III stars formed and the subsequent fraction of Pop III flux from high-redshift galaxies. However, adopting a log normal initial mass function (IMF) for Pop III stars, in place of a baseline Salpeter IMF, results in a Pop III star formation rate density (SFRD) that is 1/4 of the baseline rate. The flux from high-redshift galaxies modeled with this IMF is highly bimodal, resulting in a tiny fraction of $z leq 8$ galaxies with more than 75% of their flux coming from Pop III stars. However, at $z=9$, right before reionization in our simulations, $approx$ 20% of galaxies are Pop III-bright with $m_{rm UV} le 31.4$ mag and at least 75% of their flux generated by Pop III stars . Additionally, the log normal Pop III IMF results in a population of carbon enhanced, metal poor stars in reasonable agreement with MW halo observations. Our analysis supports the conclusion that the Pop III IMF was dominated by stars in the 20-120$M_{odot}$ range that generate SN with carbon-enhanced ejecta.
Supermassive primordial stars forming in atomically-cooled halos at $z sim15-20$ are currently thought to be the progenitors of the earliest quasars in the Universe. In this picture, the star evolves under accretion rates of $0.1 - 1$ $M_odot$ yr$^{-
The most metal-deficient stars hold important clues about the early build-up and chemical evolution of the Milky Way, and carbon-enhanced metal-poor (CEMP) stars are of special interest. However, little is known about CEMP stars in the Galactic bulge
The most metal-poor, high redshift damped Lyman-alpha systems (DLAs) provide a window to study some of the first few generations of stars. In this paper, we present a novel model to investigate the chemical enrichment of the near-pristine DLA populat
Extremely metal-poor stars are uniquely informative on the nature of massive Population III stars. Modulo a few elements that vary with stellar evolution, the present-day photospheric abundances observed in extremely metal-poor stars are representati
We present the evolutionary models of metal-free stars in the mass range from 0.8 to 1.2 Msun with up-to-date input physics. The evolution is followed to the onset of hydrogen mixing into a convection, driven by the helium flash at red giant or asymp