ﻻ يوجد ملخص باللغة العربية
Seasonal influenza is a sometimes surprisingly impactful disease, causing thousands of deaths per year along with much additional morbidity. Timely knowledge of the outbreak state is valuable for managing an effective response. The current state of the art is to gather this knowledge using in-person patient contact. While accurate, this is time-consuming and expensive. This has motivated inquiry into new approaches using internet activity traces, based on the theory that lay observations of health status lead to informative features in internet data. These approaches risk being deceived by activity traces having a coincidental, rather than informative, relationship to disease incidence; to our knowledge, this risk has not yet been quantitatively explored. We evaluated both simulated and real activity traces of varying deceptiveness for influenza incidence estimation using linear regression. We found that deceptiveness knowledge does reduce error in such estimates, that it may help automatically-selected features perform as well or better than features that require human curation, and that a semantic distance measure derived from the Wikipedia article category tree serves as a useful proxy for deceptiveness. This suggests that disease incidence estimation models should incorporate not only data about how internet features map to incidence but also additional data to estimate feature deceptiveness. By doing so, we may gain one more step along the path to accurate, reliable disease incidence estimation using internet data. This capability would improve public health by decreasing the cost and increasing the timeliness of such estimates.
Objectives Influenza outbreaks have been widely studied. However, the patterns between influenza and religious festivals remained unexplored. This study examined the patterns of influenza and Hanukkah in Israel, and that of influenza and Hajj in Bahr
In this research, methods and computational results based on statistical analysis and mathematical modelling, data collection in situ in order to make a hazard map of Hanta Virus infection in the region of Araucania, Chile are presented. The developm
Accurate real-time tracking of influenza outbreaks helps public health officials make timely and meaningful decisions that could save lives. We propose an influenza tracking model, ARGO (AutoRegression with GOogle search data), that uses publicly ava
Influenza is an infectious disease with the potential to become a pandemic, and hence, forecasting its prevalence is an important undertaking for planning an effective response. Research has found that web search activity can be used to improve influ
Influenza-like illness (ILI) estimation from web search data is an important web analytics task. The basic idea is to use the frequencies of queries in web search logs that are correlated with past ILI activity as features when estimating current ILI