ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimating influenza incidence using search query deceptiveness and generalized ridge regression

126   0   0.0 ( 0 )
 نشر من قبل Reid Priedhorsky
 تاريخ النشر 2019
والبحث باللغة English
 تأليف Reid Priedhorsky




اسأل ChatGPT حول البحث

Seasonal influenza is a sometimes surprisingly impactful disease, causing thousands of deaths per year along with much additional morbidity. Timely knowledge of the outbreak state is valuable for managing an effective response. The current state of the art is to gather this knowledge using in-person patient contact. While accurate, this is time-consuming and expensive. This has motivated inquiry into new approaches using internet activity traces, based on the theory that lay observations of health status lead to informative features in internet data. These approaches risk being deceived by activity traces having a coincidental, rather than informative, relationship to disease incidence; to our knowledge, this risk has not yet been quantitatively explored. We evaluated both simulated and real activity traces of varying deceptiveness for influenza incidence estimation using linear regression. We found that deceptiveness knowledge does reduce error in such estimates, that it may help automatically-selected features perform as well or better than features that require human curation, and that a semantic distance measure derived from the Wikipedia article category tree serves as a useful proxy for deceptiveness. This suggests that disease incidence estimation models should incorporate not only data about how internet features map to incidence but also additional data to estimate feature deceptiveness. By doing so, we may gain one more step along the path to accurate, reliable disease incidence estimation using internet data. This capability would improve public health by decreasing the cost and increasing the timeliness of such estimates.



قيم البحث

اقرأ أيضاً

Objectives Influenza outbreaks have been widely studied. However, the patterns between influenza and religious festivals remained unexplored. This study examined the patterns of influenza and Hanukkah in Israel, and that of influenza and Hajj in Bahr ain, Egypt, Iraq, Jordan, Oman and Qatar. Method Influenza surveillance data of these seven countries from 2009 to 2017 were downloaded from the FluNet of the World Health Organization. Secondary data were collected for the countries population, and the dates of Hajj and Hanukkah. We aggregated the weekly influenza A and B laboratory confirmations for each country over the study period. Weekly influenza A patterns and religious festival dates were further explored across the study period. Results We found that influenza A peaks closely followed Hanukkah in Israel in six out of seven years from 2010 to 2017. Aggregated influenza A peaks of the other six Middle East countries also occurred right after Hajj every year during the study period. Conclusions We predict that unless there is an emergence of new influenza strain, such influenza patterns are likely to persist in future years. Our results suggested that the optimal timing of mass influenza vaccination should take into considerations of the dates of these religious festivals.
In this research, methods and computational results based on statistical analysis and mathematical modelling, data collection in situ in order to make a hazard map of Hanta Virus infection in the region of Araucania, Chile are presented. The developm ent of this work involves several elements such as Landsat satellite images, biological information regarding seropositivity of Hanta Virus and information concerning positive cases of infection detected in the region. All this information has been processed to find a function that models the danger of contagion in the region, through logistic regression analysis and Artificial Neural Networks
Accurate real-time tracking of influenza outbreaks helps public health officials make timely and meaningful decisions that could save lives. We propose an influenza tracking model, ARGO (AutoRegression with GOogle search data), that uses publicly ava ilable online search data. In addition to having a rigorous statistical foundation, ARGO outperforms all previously available Google-search-based tracking models, including the latest version of Google Flu Trends, even though it uses only low-quality search data as input from publicly available Google Trends and Google Correlate websites. ARGO not only incorporates the seasonality in influenza epidemics but also captures changes in peoples online search behavior over time. ARGO is also flexible, self-correcting, robust, and scalable, making it a potentially powerful tool that can be used for real-time tracking of other social events at multiple temporal and spatial resolutions.
Influenza is an infectious disease with the potential to become a pandemic, and hence, forecasting its prevalence is an important undertaking for planning an effective response. Research has found that web search activity can be used to improve influ enza models. Neural networks (NN) can provide state-of-the-art forecasting accuracy but do not commonly incorporate uncertainty in their estimates, something essential for using them effectively during decision making. In this paper, we demonstrate how Bayesian Neural Networks (BNNs) can be used to both provide a forecast and a corresponding uncertainty without significant loss in forecasting accuracy compared to traditional NNs. Our method accounts for two sources of uncertainty: data and model uncertainty, arising due to measurement noise and model specification, respectively. Experiments are conducted using 14 years of data for England, assessing the models accuracy over the last 4 flu seasons in this dataset. We evaluate the performance of different models including competitive baselines with conventional metrics as well as error functions that incorporate uncertainty estimates. Our empirical analysis indicates that considering both sources of uncertainty simultaneously is superior to considering either one separately. We also show that a BNN with recurrent layers that models both sources of uncertainty yields superior accuracy for these metrics for forecasting horizons greater than 7 days.
Influenza-like illness (ILI) estimation from web search data is an important web analytics task. The basic idea is to use the frequencies of queries in web search logs that are correlated with past ILI activity as features when estimating current ILI activity. It has been noted that since influenza is seasonal, this approach can lead to spurious correlations with features/queries that also exhibit seasonality, but have no relationship with ILI. Spurious correlations can, in turn, degrade performance. To address this issue, we propose modeling the seasonal variation in ILI activity and selecting queries that are correlated with the residual of the seasonal model and the observed ILI signal. Experimental results show that re-ranking queries obtained by Google Correlate based on their correlation with the residual strongly favours ILI-related queries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا