ترغب بنشر مسار تعليمي؟ اضغط هنا

Analyzing Periodicity and Saliency for Adult Video Detection

120   0   0.0 ( 0 )
 نشر من قبل Xiaoyan Gu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Content-based adult video detection plays an important role in preventing pornography. However, existing methods usually rely on single modality and seldom focus on multi-modality semantics representation. Addressing at this problem, we put forward an approach of analyzing periodicity and saliency for adult video detection. At first, periodic patterns and salient regions are respective-ly analyzed in audio-frames and visual-frames. Next, the multi-modal co-occurrence semantics is described by combining audio periodicity with visual saliency. Moreover, the performance of our approach is evaluated step by step. Experimental results show that our approach obviously outper-forms some state-of-the-art methods.

قيم البحث

اقرأ أيضاً

Video smoke detection is a promising fire detection method especially in open or large spaces and outdoor environments. Traditional video smoke detection methods usually consist of candidate region extraction and classification, but lack powerful cha racterization for smoke. In this paper, we propose a novel video smoke detection method based on deep saliency network. Visual saliency detection aims to highlight the most important object regions in an image. The pixel-level and object-level salient convolutional neural networks are combined to extract the informative smoke saliency map. An end-to-end framework for salient smoke detection and existence prediction of smoke is proposed for application in video smoke detection. The deep feature map is combined with the saliency map to predict the existence of smoke in an image. Initial and augmented dataset are built to measure the performance of frameworks with different design strategies. Qualitative and quantitative analysis at frame-level and pixel-level demonstrate the excellent performance of the ultimate framework.
The existing still-static deep learning based saliency researches do not consider the weighting and highlighting of extracted features from different layers, all features contribute equally to the final saliency decision-making. Such methods always e venly detect all potentially significant regions and unable to highlight the key salient object, resulting in detection failure of dynamic scenes. In this paper, based on the fact that salient areas in videos are relatively small and concentrated, we propose a textbf{key salient object re-augmentation method (KSORA) using top-down semantic knowledge and bottom-up feature guidance} to improve detection accuracy in video scenes. KSORA includes two sub-modules (WFE and KOS): WFE processes local salient feature selection using bottom-up strategy, while KOS ranks each object in global fashion by top-down statistical knowledge, and chooses the most critical object area for local enhancement. The proposed KSORA can not only strengthen the saliency value of the local key salient object but also ensure global saliency consistency. Results on three benchmark datasets suggest that our model has the capability of improving the detection accuracy on complex scenes. The significant performance of KSORA, with a speed of 17FPS on modern GPUs, has been verified by comparisons with other ten state-of-the-art algorithms.
Data-driven saliency detection has attracted strong interest as a result of applying convolutional neural networks to the detection of eye fixations. Although a number of imagebased salient object and fixation detection models have been proposed, vid eo fixation detection still requires more exploration. Different from image analysis, motion and temporal information is a crucial factor affecting human attention when viewing video sequences. Although existing models based on local contrast and low-level features have been extensively researched, they failed to simultaneously consider interframe motion and temporal information across neighboring video frames, leading to unsatisfactory performance when handling complex scenes. To this end, we propose a novel and efficient video eye fixation detection model to improve the saliency detection performance. By simulating the memory mechanism and visual attention mechanism of human beings when watching a video, we propose a step-gained fully convolutional network by combining the memory information on the time axis with the motion information on the space axis while storing the saliency information of the current frame. The model is obtained through hierarchical training, which ensures the accuracy of the detection. Extensive experiments in comparison with 11 state-of-the-art methods are carried out, and the results show that our proposed model outperforms all 11 methods across a number of publicly available datasets.
Visual saliency modeling for images and videos is treated as two independent tasks in recent computer vision literature. While image saliency modeling is a well-studied problem and progress on benchmarks like SALICON and MIT300 is slowing, video sali ency models have shown rapid gains on the recent DHF1K benchmark. Here, we take a step back and ask: Can image and video saliency modeling be approached via a unified model, with mutual benefit? We identify different sources of domain shift between image and video saliency data and between different video saliency datasets as a key challenge for effective joint modelling. To address this we propose four novel domain adaptation techniques - Domain-Adaptive Priors, Domain-Adaptive Fusion, Domain-Adaptive Smoothing and Bypass-RNN - in addition to an improved formulation of learned Gaussian priors. We integrate these techniques into a simple and lightweight encoder-RNN-decoder-style network, UNISAL, and train it jointly with image and video saliency data. We evaluate our method on the video saliency datasets DHF1K, Hollywood-2 and UCF-Sports, and the image saliency datasets SALICON and MIT300. With one set of parameters, UNISAL achieves state-of-the-art performance on all video saliency datasets and is on par with the state-of-the-art for image saliency datasets, despite faster runtime and a 5 to 20-fold smaller model size compared to all competing deep methods. We provide retrospective analyses and ablation studies which confirm the importance of the domain shift modeling. The code is available at https://github.com/rdroste/unisal
Efficient spatiotemporal modeling is an important yet challenging problem for video action recognition. Existing state-of-the-art methods exploit motion clues to assist in short-term temporal modeling through temporal difference over consecutive fram es. However, insignificant noises will be inevitably introduced due to the camera movement. Besides, movements of different actions can vary greatly. In this paper, we propose a Temporal Saliency Integration (TSI) block, which mainly contains a Salient Motion Excitation (SME) module and a Cross-scale Temporal Integration (CTI) module. Specifically, SME aims to highlight the motion-sensitive area through local-global motion modeling, where the saliency alignment and pyramidal feature difference are conducted successively between neighboring frames to capture motion dynamics with less noises caused by misaligned background. CTI is designed to perform multi-scale temporal modeling through a group of separate 1D convolutions respectively. Meanwhile, temporal interactions across different scales are integrated with attention mechanism. Through these two modules, long short-term temporal relationships can be encoded efficiently by introducing limited additional parameters. Extensive experiments are conducted on several popular benchmarks (i.e., Something-Something V1 & V2, Kinetics-400, UCF-101, and HMDB-51), which demonstrate the effectiveness and superiority of our proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا