ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining First Star Formation with 21cm-Cosmology

197   0   0.0 ( 0 )
 نشر من قبل Anna Schauer
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Within standard $Lambda$CDM cosmology, Population III (Pop III) star formation in minihalos of mass $M_mathrm{halo}gtrsim 5times10^5$ M$_odot$ provides the first stellar sources of Lyman$alpha$ (Ly$alpha$) photons. The Experiment to Detect the Global Epoch of Reionization Signature (EDGES) has measured a strong absorption signal of the redshifted 21 cm radiation from neutral hydrogen at $zapprox 17$, requiring efficient formation of massive stars before then. In this paper, we investigate whether star formation in minihalos plays a significant role in establishing the early Ly$alpha$ background required to produce the EDGES absorption feature. We find that Pop III stars are important in providing the necessary Ly$alpha$-flux at high redshifts, and derive a best-fitting average Pop III stellar mass of $sim$ 750M$_odot{}$ per minihalo, corresponding to a star formation efficiency of 0.1%. Further, it is important to include baryon-dark matter streaming velocities in the calculation, to limit the efficiency of Pop~III star formation in minihalos. Without this effect, the cosmic dawn coupling between 21 cm spin temperature and that of the gas would occur at redshifts higher than what is implied by EDGES.



قيم البحث

اقرأ أيضاً

121 - Sultan Hassan 2019
Future Square Kilometre Array (SKA) surveys are expected to generate huge datasets of 21cm maps on cosmological scales from the Epoch of Reionization (EoR). We assess the viability of exploiting machine learning techniques, namely, convolutional neur al networks (CNN), to simultaneously estimate the astrophysical and cosmological parameters from 21cm maps from semi-numerical simulations. We further convert the simulated 21cm maps into SKA-like mock maps using the detailed SKA antennae distribution, thermal noise and a recipe for foreground cleaning. We successfully design two CNN architectures (VGGNet-like and ResNet-like) that are both efficiently able to extract simultaneously three astrophysical parameters, namely the photon escape fraction (f$_{rm esc}$), the ionizing emissivity power dependence on halo mass ($C_{rm ion}$) and the ionizing emissivity redshift evolution index ($D_{rm ion}$), and three cosmological parameters, namely the matter density parameter ($Omega_{m}$), the dimensionless Hubble constant ($h$), and the matter fluctuation amplitude ($sigma_{8}$), from 21cm maps at several redshifts. With the presence of noise from SKA, our designed CNNs are still able to recover these astrophysical and cosmological parameters with great accuracy ($R^{2} > 92%$), improving to $R^{2} > 99%$ towards low redshift and low neutral fraction values. Our results show that future 21cm observations can play a key role to break degeneracy between models and tightly constrain the astrophysical and cosmological parameters, using only few frequency channels.
We simulate the formation of a low metallicity (0.01 Zsun) stellar cluster in a dwarf galaxy at redshift z~14. Beginning with cosmological initial conditions, the simulation utilizes adaptive mesh refinement and sink particles to follow the collapse and evolution of gas past the opacity limit for fragmentation, thus resolving the formation of individual protostellar cores. A time- and location-dependent protostellar radiation field, which heats the gas by absorption on dust, is computed by integration of protostellar evolutionary tracks with the MESA code. The simulation also includes a robust non-equilibrium chemical network that self-consistently treats gas thermodynamics and dust-gas coupling. The system is evolved for 18 kyr after the first protostellar source has formed. In this time span, 30 sink particles representing protostellar cores form with a total mass of 81 Msun. Their masses range from ~0.1 Msun to 14.4 Msun with a median mass ~0.5-1 Msun. Massive protostars grow by competitive accretion while lower-mass protostars are stunted in growth by close encounters and many-body ejections. In the regime explored here, the characteristic mass scale is determined by the temperature floor set by the cosmic microwave background and by the onset of efficient dust-gas coupling. It seems unlikely that host galaxies of the first bursts of metal-enriched star formation will be detectable with the James Webb Space Telescope or other next-generation infrared observatories. Instead, the most promising access route to the dawn of cosmic star formation may lie in the scrutiny of metal-poor, ancient stellar populations in the Galactic neighborhood. The observable targets that correspond to the system simulated here are ultra-faint dwarf satellite galaxies such as Bootes II, Segue I and II, and Willman I.
We adapt the L-Galaxies semi-analytic model to follow the star-formation histories (SFH) of galaxies -- by which we mean a record of the formation time and metallicities of the stars that are present in each galaxy at a given time. We use these to co nstruct stellar spectra in post-processing, which offers large efficiency savings and allows user-defined spectral bands and dust models to be applied to data stored in the Millennium data repository. We contrast model SFHs from the Millennium Simulation with observed ones from the VESPA algorithm as applied to the SDSS-7 catalogue. The overall agreement is good, with both simulated and SDSS galaxies showing a steeper SFH with increased stellar mass. The SFHs of blue and red galaxies, however, show poor agreement between data and simulations, which may indicate that the termination of star formation is too abrupt in the models. The mean star-formation rate (SFR) of model galaxies is well-defined and is accurately modelled by a double power law at all redshifts: SFR proportional to $1/(x^{-1.39}+x^{1.33})$, where $x=(t_a-t)/3.0,$Gyr, $t$ is the age of the stars and $t_a$ is the loopback time to the onset of galaxy formation; above a redshift of unity, this is well approximated by a gamma function: SFR proportional to $x^{1.5}e^{-x}$, where $x=(t_a-t)/2.0,$Gyr. Individual galaxies, however, show a wide dispersion about this mean. When split by mass, the SFR peaks earlier for high-mass galaxies than for lower-mass ones, and we interpret this downsizing as a mass-dependence in the evolution of the quenched fraction: the SFHs of star-forming galaxies show only a weak mass dependence.
We present the delay time distribution (DTD) estimates of Type Ia supernovae (SNe~Ia) using spatially resolved SN~Ia host galaxy spectra from MUSE and MaNGA. By employing a grouping algorithm based on k-means and earth movers distances (EMD), we sepa rated the host galaxy star formation histories (SFHs) into spatially distinct regions and used maximum likelihood method to constrain the DTD of SNe Ia progenitors. When a power-law model of the form $DTD(t)propto t^{s} (t>tau)$ is used, we found an SN rate decay slope $s=-1.41^{+0.32}_{-0.33}$ and a delay time $tau=120^{+142}_{-83} Myr$ . Moreover, we tested other DTD models such as a broken power law model and a two-component power law model, and found no statistically significant support to these alternative models.
130 - Bruno Henriques 2014
We have updated the Munich galaxy formation model to the Planck first-year cosmology, while modifying the treatment of baryonic processes to reproduce recent data on the abundance and passive fractions of galaxies from z= 3 down to z=0. Matching thes e more extensive and more precise observational results requires us to delay the reincorporation of wind ejecta, to lower the surface density threshold for turning cold gas into stars, to eliminate ram-pressure stripping in haloes less massive than ~10^14 Msun, and to modify our model for radio mode feedback. These changes cure the most obvious failings of our previous models, namely the overly early formation of low-mass galaxies and the overly large fraction of them that are passive at late times. The new model is calibrated to reproduce the observed evolution both of the stellar mass function and of the distribution of star formation rate at each stellar mass. Massive galaxies (M>10^11 [Msun]) assemble most of their mass before z=1 and are predominantly old and passive at z=0, while lower mass galaxies assemble later and, for M<10^9.5 (Msun), are still predominantly blue and star forming at z=0. This phenomenological but physically based model allows the observations to be interpreted in terms of the efficiency of the various processes that control the formation and evolution of galaxies as a function of their stellar mass, gas content, environment and time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا