ﻻ يوجد ملخص باللغة العربية
This paper studies the problem of information theoretic secure communication when a source has private messages to transmit to $m$ destinations, in the presence of a passive adversary who eavesdrops an unknown set of $k$ edges. The information theoretic secure capacity is derived over unit-edge capacity separable networks, for the cases when $k=1$ and $m$ is arbitrary, or $m=3$ and $k$ is arbitrary. This is achieved by first showing that there exists a secure polynomial-time code construction that matches an outer bound over two-layer networks, followed by a deterministic mapping between two-layer and arbitrary separable networks.
In wireless data networks, communication is particularly susceptible to eavesdropping due to its broadcast nature. Security and privacy systems have become critical for wireless providers and enterprise networks. This paper considers the problem of s
In this paper, the problem of securely computing a function over the binary modulo-2 adder multiple-access wiretap channel is considered. The problem involves a legitimate receiver that wishes to reliably and efficiently compute a function of distrib
We study the index coding problem in the presence of an eavesdropper, where the aim is to communicate without allowing the eavesdropper to learn any single message aside from the messages it may already know as side information. We establish an outer
The problem of multicasting two nested messages is studied over a class of networks known as combination networks. A source multicasts two messages, a common and a private message, to several receivers. A subset of the receivers (called the public re
The Langberg-Medard multiple unicast conjecture claims that for any strongly reachable $k$-pair network, there exists a multi-flow with rate $(1,1,dots,1)$. In a previous work, through combining and concatenating the so-called elementary flows, we ha