ترغب بنشر مسار تعليمي؟ اضغط هنا

Artificial Intelligence and Location Verification in Vehicular Networks

257   0   0.0 ( 0 )
 نشر من قبل Ullah Ihsan
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Location information claimed by devices will play an ever-increasing role in future wireless networks such as 5G, the Internet of Things (IoT). Against this background, the verification of such claimed location information will be an issue of growing importance. A formal information-theoretic Location Verification System (LVS) can address this issue to some extent, but such a system usually operates within the limits of idealistic assumptions on a-priori information on the proportion of genuine users in the field. In this work we address this critical limitation by using a Neural Network (NN) showing how such a NN based LVS is capable of efficiently functioning even when the proportion of genuine users is completely unknown a-priori. We demonstrate the improved performance of this new form of LVS based on Time of Arrival measurements from multiple verifying base stations within the context of vehicular networks, quantifying how our NN-LVS outperforms the stand-alone information-theoretic LVS in a range of anticipated real-world conditions. We also show the efficient performance for the NN-LVS when the users signals have added Non-Line-of-Site (NLoS) bias in them. This new LVS can be applied to a range of location-centric applications within the domain of the IoT.



قيم البحث

اقرأ أيضاً

Driven by the unprecedented high throughput and low latency requirements in next-generation wireless networks, this paper introduces an artificial intelligence (AI) enabled framework in which unmanned aerial vehicles (UAVs) use non-orthogonal multipl e access (NOMA) and mobile edge computing (MEC) techniques to service terrestrial mobile users (MUs). The proposed framework enables the terrestrial MUs to offload their computational tasks simultaneously, intelligently, and flexibly, thus enhancing their connectivity as well as reducing their transmission latency and their energy consumption. To this end, the fundamentals of this framework are first introduced. Then, a number of communication and AI techniques are proposed to improve the quality of experiences of terrestrial MUs. To this end, federated learning and reinforcement learning are introduced for intelligent task offloading and computing resource allocation. For each learning technique, motivations, challenges, and representative results are introduced. Finally, several key technical challenges and open research issues of the proposed framework are summarized.
147 - Nan Cheng , Feng Lyu , Jiayin Chen 2018
Vehicular communications networks (VANETs) enable information exchange among vehicles, other end devices and public networks, which plays a key role in road safety/infotainment, intelligent transportation system, and self-driving system. As the vehic ular connectivity soars, and new on-road mobile applications and technologies emerge, VANETs are generating an ever-increasing amount of data, requiring fast and reliable transmissions through VANETs. On the other hand, a variety of VANETs related data can be analyzed and utilized to improve the performance of VANETs. In this article, we first review the VANETs technologies to efficiently and reliably transmit the big data. Then, the methods employing big data for studying VANETs characteristics and improving VANETs performance are discussed. Furthermore, we present a case study where machine learning schemes are applied to analyze the VANETs measurement data for efficiently detecting negative communication conditions.
89 - You Li , Ruizhi Chen , Xiaoji Niu 2020
The inertial navigation system (INS) has been widely used to provide self-contained and continuous motion estimation in intelligent transportation systems. Recently, the emergence of chip-level inertial sensors has expanded the relevant applications from positioning, navigation, and mobile mapping to location-based services, unmanned systems, and transportation big data. Meanwhile, benefit from the emergence of big data and the improvement of algorithms and computing power, artificial intelligence (AI) has become a consensus tool that has been successfully applied in various fields. This article reviews the research on using AI technology to enhance inertial sensing from various aspects, including sensor design and selection, calibration and error modeling, navigation and motion-sensing algorithms, multi-sensor information fusion, system evaluation, and practical application. Based on the over 30 representative articles selected from the nearly 300 related publications, this article summarizes the state of the art, advantages, and challenges on each aspect. Finally, it summarizes nine advantages and nine challenges of AI-enhanced inertial sensing and then points out future research directions.
This report surveys the landscape of potential security threats from malicious uses of AI, and proposes ways to better forecast, prevent, and mitigate these threats. After analyzing the ways in which AI may influence the threat landscape in the digit al, physical, and political domains, we make four high-level recommendations for AI researchers and other stakeholders. We also suggest several promising areas for further research that could expand the portfolio of defenses, or make attacks less effective or harder to execute. Finally, we discuss, but do not conclusively resolve, the long-term equilibrium of attackers and defenders.
Supply chains lend themselves to blockchain technology, but certain challenges remain, especially around invoice financing. For example, the further a supplier is removed from the final consumer product, the more difficult it is to get their invoices financed. Moreover, for competitive reasons, retailers and manufacturers do not want to disclose their supply chains. However, upstream suppliers need to prove that they are part of a `stable supply chain to get their invoices financed, which presents the upstream suppliers with huge, and often unsurmountable, obstacles to get the necessary finance to fulfil the next order, or to expand their business. Using a fictitious supply chain use case, which is based on a real world use case, we demonstrate how these challenges have the potential to be solved by combining more advanced and specialised blockchain technologies with other technologies such as Artificial Intelligence. We describe how atomic crosschain functionality can be utilised across private blockchains to retrieve the information required for an invoice financier to make informed decisions under uncertainty, and consider the effect this decision has on the overall stability of the supply chain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا