ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of Interfacial Antiferromagnetic Coupling between Magnetic Topological Insulator and Antiferromagnetic Insulator

77   0   0.0 ( 0 )
 نشر من قبل Cui-Zu Chang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Inducing magnetic orders in a topological insulator (TI) to break its time reversal symmetry has been predicted to reveal many exotic topological quantum phenomena. The manipulation of magnetic orders in a TI layer can play a key role in harnessing these quantum phenomena towards technological applications. Here we fabricated a thin magnetic TI film on an antiferromagnetic (AFM) insulator Cr2O3 layer and found that the magnetic moments of the magnetic TI layer and the surface spins of the Cr2O3 layers favor interfacial AFM coupling. Field cooling studies show a crossover from negative to positive exchange bias clarifying the competition between the interfacial AFM coupling energy and the Zeeman energy in the AFM insulator layer. The interfacial exchange coupling also enhances the Curie temperature of the magnetic TI layer. The unique interfacial AFM alignment in magnetic TI on AFM insulator heterostructures opens a new route toward manipulating the interplay between topological states and magnetic orders in spin-engineered heterostructures, facilitating the exploration of proof-of-concept TI-based spintronic and electronic devices with multi-functionality and low power consumption.

قيم البحث

اقرأ أيضاً

Despite immense advances in the field of topological materials, the antiferromagnetic topological insulator (AFMTI) state, predicted in 2010, has been resisting experimental observation up to now. Here, using density functional theory and Monte Carlo method we predict and by means of structural, transport, magnetic, and angle-resolved photoemission spectroscopy measurements confirm for the first time realization of the AFMTI phase, that is hosted by the van der Waals layered compound MnBi$_2$Te$_4$. An interlayer AFM ordering makes MnBi$_2$Te$_4$ invariant with respect to the combination of the time-reversal ($Theta$) and primitive-lattice translation ($T_{1/2}$) symmetries, $S=Theta T_{1/2}$, which gives rise to the $Z_2$ topological classification of AFM insulators, $Z_2$ being equal to 1 for this material. The $S$-breaking (0001) surface of MnBi$_2$Te$_4$ features a giant bandgap in the topological surface state thus representing an ideal platform for the observation of such long-sought phenomena as the quantized magnetoelectric coupling and intrinsic axion insulator state.
Recently, MnBi2Te4 has been discovered as the first intrinsic antiferromagnetic topological insulator (AFM TI), and will become a promising material to discover exotic topological quantum phenomena. In this work, we have realized the successful synth esis of high-quality MnBi2Te4 single crystals by solid-state reactions. The as-grown MnBi2Te4 single crystal exhibits a van der Waals layered structure, which is composed of septuple Te-Bi-Te-Mn-Te-Bi-Te sequences as determined by powder X-ray diffraction (PXRD) and high-resolution high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). The magnetic order below 25 K as a consequence of A-type antiferromagnetic interaction between Mn layers in the MnBi2Te4 crystal suggests the unique interplay between antiferromagnetism and topological quantum states. The transport measurements of MnBi2Te4 single crystals further confirm its magnetic transition. Moreover, the unstable surface of MnBi2Te4, which is found to be easily oxidized in air, deserves attention for onging research on few-layer samples. This study on the first AFM TI of MnBi2Te4 will guide the future research on other potential candidates in the MBixTey family (M = Ni, V, Ti, etc.).
Magnetic topological insulators (TI) provide an important material platform to explore quantum phenomena such as quantized anomalous Hall (QAH) effect and Majorana modes, etc. Their successful material realization is thus essential for our fundamenta l understanding and potential technical revolutions. By realizing a bulk van der Waals material MnBi4Te7 with alternating septuple [MnBi2Te4] and quintuple [Bi2Te3] layers, we show that it is ferromagnetic in plane but antiferromagnetic along the c axis with an out-of-plane saturation field of ~ 0.22 T at 2 K. Our angle-resolved photoemission spectroscopy measurements and first-principles calculations further demonstrate that MnBi4Te7 is a Z2 antiferromagnetic TI with two types of surface states associated with the [MnBi2Te4] or [Bi2Te3] termination, respectively. Additionally, its superlattice nature may make various heterostructures of [MnBi2Te4] and [Bi2Te3] layers possible by exfoliation. Therefore, the low saturation field and the superlattice nature of MnBi4Te7 make it an ideal system to investigate rich emergent phenomena.
Magnon-polarons, a type of hybridized excitations between magnons and phonons, were first reported in yttrium iron garnet as anomalies in the spin Seebeck effect responses. Here we report an observation of antiferromagnetic (AFM) magnon-polarons in a uniaxial AFM insulator Cr2O3. Despite the relatively higher energy of magnon than that of the acoustic phonons, near the spin-flop transition of ~ 6 T, the left-handed magnon spectrum shifts downward to hybridize with the acoustic phonons to form AFM magnon-polarons, which can also be probed by the spin Seebeck effect. The spin Seebeck signal is founded to be enhanced due to the magnon-polarons at low temperatures.
405 - X. Lei , L. Zhou , Z.Y. Hao 2020
Through a thorough magneto-transport study of antiferromagnetic topological insulator MnBi2Te4 (MBT) thick films, a positive linear magnetoresistance (LMR) with a two-dimensional (2D) character is found in high perpendicular magnetic fields and tempe ratures up to at least 260 K. The nonlinear Hall effect further reveals the existence of high-mobility surface states in addition to the bulk states in MBT. We ascribe the 2D LMR to the high-mobility surface states of MBT, thus unveiling a transport signature of surface states in thick MBT films. A suppression of LMR near the Neel temperature of MBT is also noticed, which might suggest the gap opening of surface states due to the paramagnetic-antiferromagnetic phase transition of MBT. Besides these, the failure of the disorder and quantum LMR model in explaining the observed LMR indicates new physics must be invoked to understand this phenomenon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا