ﻻ يوجد ملخص باللغة العربية
Low-mass M dwarfs represent the most common outcome of star formation, but their complex emergent spectra hinder detailed studies of their composition and initial formation. The measurement of isotopic ratios is a key tool that has been used to unlock the formation of our Solar System, the Sun, and the nuclear processes within more massive stars. We observed GJ 745AB, two M dwarfs orbiting in a wide binary, with the IRTF/iSHELL spectrograph. Our spectroscopy of CO in these stars at the 4.7 micron fundamental and 2.3 micron first-overtone rovibrational bandheads reveals 12C16O, 13C16O, and 12C18O in their photospheres. Since the stars are fully convective, the atomic constituents of these isotopologues should be uniformly mixed throughout the stars interiors. We find that in these M dwarfs, both 12C/13C and 16O/18O greatly exceed the Solar values. These measurements cannot be explained solely by models of Galactic chemical evolution, but require that the stars formed from an ISM significantly enriched by material ejected from an exploding core-collape supernova. These isotopic measurements complement the elemental abundances provided by large-scale spectroscopic surveys, and open a new window onto studies of Galactic evolution, stellar populations, and individual systems.
We have discovered a new, near-equal mass, eclipsing M dwarf binary from the Next Generation Transit Survey. This system is only one of 3 field age ($>$ 1 Gyr), late M dwarf eclipsing binaries known, and has a period of 1.74774 days, similar to that
(abridged) Context: Main-sequence late-type stars with masses less than $0.35 M_odot$ are fully convective. Aims: The goal is to study convection, differential rotation, and dynamos as functions of rotation in fully convective stars. Methods: Three-d
We present the characterization of CRTS J055255.7$-$004426 (=THOR 42), a young eclipsing binary comprising two pre-main sequence M dwarfs (combined spectral type M3.5). This nearby (103 pc), short-period (0.859 d) system was recently proposed as a me
We present the discovery and characterisation of an eclipsing binary identified by the Next Generation Transit Survey in the $sim$115 Myr old Blanco 1 open cluster. NGTS J0002-29 comprises three M dwarfs: a short-period binary and a companion in a wi
Stars of sufficiently low mass are convective throughout their interiors, and so do not possess an internal boundary layer akin to the solar tachocline. Because that interface figures so prominently in many theories of the solar magnetic dynamo, a wi