ترغب بنشر مسار تعليمي؟ اضغط هنا

Invertible $K(2)$-Local $E$-Modules in $C_4$-Spectra

52   0   0.0 ( 0 )
 نشر من قبل Agnes Beaudry
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the Picard group of the category of $K(2)$-local module spectra over the ring spectrum $E^{hC_4}$, where $E$ is a height 2 Morava $E$-theory and $C_4$ is a subgroup of the associated Morava stabilizer group. This group can be identified with the Picard group of $K(2)$-local $E$-modules in genuine $C_4$-spectra. We show that in addition to a cyclic subgroup of order 32 generated by $ Ewedge S^1$ the Picard group contains a subgroup of order 2 generated by $Ewedge S^{7+sigma}$, where $sigma$ is the sign representation of the group $C_4$. In the process, we completely compute the $RO(C_4)$-graded Mackey functor homotopy fixed point spectral sequence for the $C_4$-spectrum $E$.



قيم البحث

اقرأ أيضاً

We construct and study a t-structure on p-typical cyclotomic spectra and explain how to recover crystalline cohomology of smooth schemes over perfect fields using this t-structure. Our main tool is a new approach to p-typical cyclotomic spectra via o bjects we call p-typical topological Cartier modules. Using these, we prove that the heart of the cyclotomic t-structure is the full subcategory of derived V-complete objects in the abelian category of p-typical Cartier modules.
196 - Agnes Beaudry 2017
In this note, we compute the image of the $alpha$-family in the homotopy of the $K(2)$-local sphere at the prime $p=2$ by locating its image in the algebraic duality spectral sequence. This is a stepping stone for the computation of the homotopy grou ps of the $K(2)$-local sphere at the prime $2$ using the duality spectral sequences.
We calculate the homotopy type of $L_1L_{K(2)}S^0$ and $L_{K(1)}L_{K(2)}S^0$ at the prime 2, where $L_{K(n)}$ is localization with respect to Morava $K$-theory and $L_1$ localization with respect to $2$-local $K$ theory. In $L_1L_{K(2)}S^0$ we find a ll the summands predicted by the Chromatic Splitting Conjecture, but we find some extra summands as well. An essential ingredient in our approach is the analysis of the continuous group cohomology $H^ast_c(mathbb{G}_2,E_0)$ where $mathbb{G}_2$ is the Morava stabilizer group and $E_0 = mathbb{W}[[u_1]]$ is the ring of functions on the height $2$ Lubin-Tate space. We show that the inclusion of the constants $mathbb{W} to E_0$ induces an isomorphism on group cohomology, a radical simplification.
Let n be any positive integer and p any prime. Also, let X be any spectrum and let K(n) denote the nth Morava K-theory spectrum. Then we construct a descent spectral sequence with abutment pi_*(L_{K(n)}(X)) and E_2-term equal to the continuous cohomo logy of G_n, the extended Morava stabilizer group, with coefficients in a certain discrete G_n-module that is built from various homotopy fixed point spectra of the Morava module of X. This spectral sequence can be contrasted with the K(n)-local E_n-Adams spectral sequence for pi_*(L_{K(n)}(X)), whose E_2-term is not known to always be equal to a continuous cohomology group.
In this paper we use the approach introduced in an earlier paper by Goerss, Henn, Mahowald and Rezk in order to analyze the homotopy groups of L_{K(2)}V(0), the mod-3 Moore spectrum V(0) localized with respect to Morava K-theory K(2). These homotopy groups have already been calculated by Shimomura. The results are very complicated so that an independent verification via an alternative approach is of interest. In fact, we end up with a result which is more precise and also differs in some of its details from that of Shimomura. An additional bonus of our approach is that it breaks up the result into smaller and more digestible chunks which are related to the K(2)-localization of the spectrum TMF of topological modular forms and related spectra. Even more, the Adams-Novikov differentials for L_{K(2)}V(0) can be read off from those for TMF.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا