ترغب بنشر مسار تعليمي؟ اضغط هنا

Unexplored reactivity of (Sn)2- Oligomers with transition metals in low-temperature solid-state reactions

79   0   0.0 ( 0 )
 نشر من قبل Laurent Cario
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chalcogenides (Q = S, Se, Te), one of the most important family of materials in solid-state chemistry, differ from oxides by their ability to form covalently-bonded (Qn)2- oligomers. Each chalcogen atom within such entity fulfills the octet rule by sharing electrons with other chalcogen atoms but some antibonding levels are vacant. This makes these oligomers particularly suited for redox reactions in solid state, namely towards elemental metals with a low redox potential that may be oxidized. We recently used this strategy to design, at low temperature and in an orientated manner, materials with 2D infinite layers through the topochemical insertion of copper into preformed precursors containing (S2)2- and/or (Se2)2- dimers (i.e. La2O2S2, Ba2F2S2 and LaSe2). Herein we extend the validity of the concept to the redox activity of (S2)2- and (S3)2- oligomers towards 3d transition metal elements (Cu, Ni, Fe) and highlight the strong relationship between the structures of the precursors, BaS2 and BaS3, and the products, BaCu2S2, BaCu4S3, BaNiS2 and BaFe2S3. Clearly, beyond the natural interest for the chemical reactivity of oligomers to generate compounds, this soft chemistry route may conduct to the rational conception of materials with a predicted crystal structure.



قيم البحث

اقرأ أيضاً

99 - C. Li , G. Habler , T. Griffiths 2018
The structure of crystalline interfaces plays an important role in solid-state reactions. The Al2O3/MgAl2O4/MgO system provides an ideal model system for investigating the mechanisms underlying the migration of interfaces during interface reaction. M gAl2O4 layers have been grown between Al2O3 and MgO, and the atomic structure of Al2O3/MgAl2O4 interfaces at different growth stages was characterized using aberration-corrected scanning transmission electron microscopy. The oxygen sublattice transforms from hexagonal close-packed (hcp) stacking in Al2O3 to cubic close-packed (ccp) stacking in MgAl2O4. Partial dislocations associated with steps are observed at the interface. At the reaction-controlled early growth stages, such partial dislocations coexist with the edge dislocations. However, at the diffusion-controlled late growth stages, such partial dislocations are dominant. The observed structures indicate that progression of the Al2O3/MgAl2O4 interface into Al2O3 is accomplished by the glide of partial dislocations accompanied by the exchange of Al3+ and Mg2+ cations. The interface migration may be envisaged as a plane-by-plane zipper-like motion, which repeats along the interface facilitating its propagation. MgAl2O4 grains can adopt two crystallographic orientations with a twinning orientation relationship, and grow by dislocations gliding in opposite directions. Where the oppositely propagating partial dislocations and interface steps meet, interlinked twin boundaries and incoherent {Sigma}3 grain boundaries form. The newly grown MgAl2O4 grains compete with each other, leading to a growth-selection and successive coarsening of the MgAl2O4 grains. This understanding could help to interpret the interface reaction or phase transformation of a wide range of materials that exhibit a similar hcp/ccp transition.
123 - R. Cortes , A. Tejeda , J. Lobo 2006
We report an investigation on the properties of 0.33 ML of Sn on Ge(111) at temperatures down to 5 K. Low-energy electron diffraction and scanning tunneling microscopy show that the (3x3) phase formed at 200 K, reverts to a new (root-3xroot-3)R30 pha se below 30 K. The vertical distortion characteristic of the (3x3) phase is lost across the phase transition. Angle-resolved photoemission experiments show that concomitantly with the structural phase transition, a metal-insulator phase transition takes place. In agreement with theoretical predictions, the (root-3xroot-3)R30 ground state is interpreted as the experimental realization of a Mott insulator for a narrow half-filled band in a two-dimensional triangular lattice.
68 - A. S. Dobrota 2019
Catalysis has entered everyday life through a number of technological processes relying on different catalytic systems. The increasing demand for such systems requires rationalization of the use of their expensive components, like noble metal catalys ts. As such, a catalyst with low noble metal concentration, in which each one of the noble atoms is active, would reach the lowest price possible. Nevertheless, there are no reactivity descriptors outlined for this type of low coordinated supported atoms. Using DFT calculations, we consider three diverse systems as models of single atom catalysts. We investigate monomers and bimetallic dimers of Ru, Rh, Pd, Ir and Pt on MgO(001), Cu adatom on thin Mo(001)-supported films (NaF, MgO and ScN) and single Pt adatoms on oxidized graphene surfaces. Reactivity of these metal atoms was probed by CO. In each case we see the interaction through the donation-backdonation mechanism. In some cases the CO adsorption energies can be linked to the position of the d-band center and the charge of the adatom. Higher positioned d-band center and less charged supported single atoms bind CO weaker. Also, in some cases metal atoms less strongly bonded to the substrate bind CO more strongly. The results suggest that the identification of common activity descriptor(s) for single metal atoms on foreign supports is a difficult task with no unique solution. However, it is also suggested that the stability of adatoms and strong anchoring to the support are prerequisites for the application of descriptor-based search for novel single atom catalysts.
Realization of graphene moire superstructures on the surface of 4d and 5d transition metals offers templates with periodically modulated electron density, which is responsible for a number of fascinating effects, including the formation of quantum do ts and the site selective adsorption of organic molecules or metal clusters on graphene. Here, applying the combination of scanning probe microscopy/spectroscopy and the density functional theory calculations, we gain a profound insight into the electronic and topographic contributions to the imaging contrast of the epitaxial graphene/Ir(111) system. We show directly that in STM imaging the electronic contribution is prevailing compared to the topographic one. In the force microscopy and spectroscopy experiments we observe a variation of the interaction strength between the tip and high-symmetry places within the graphene moire supercell, which determine the adsorption cites for molecules or metal clusters on graphene/Ir(111).
The dissociative chemisorption of molecular nitrogen on clean lanthanide surfaces at ambient temperature and low pressure is explored. In-situ conductance measurements track the conversion from the lanthanide metals to the insulating lanthanide nitri des. A small partial pressure of oxygen ($sim 10^{-8}$ mbar) is shown to inhibit the nitridation of lanthanides at $10^{-4}$ mbar of N$_2$. The rate of nitridation as a function of nitrogen pressure is measured at low pressure for a series of lanthanide elements, gadolinium, terbium, dysprosium, ytterbium and praseodymium. Exposure of the lanthanide surfaces to both N$_2$ and H$_2$ results in the formation of NH$_3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا