ﻻ يوجد ملخص باللغة العربية
This work targets the development of an efficient abstraction method for formal analysis and control synthesis of discrete-time stochastic hybrid systems (SHS) with linear dynamics. The focus is on temporal logic specifications, both over finite and infinite time horizons. The framework constructs a finite abstraction as a class of uncertain Markov models known as interval Markov decision process (IMDP). Then, a strategy that maximizes the satisfaction probability of the given specification is synthesized over the IMDP and mapped to the underlying SHS. In contrast to existing formal approaches, which are by and large limited to finite-time properties and rely on conservative over-approximations, we show that the exact abstraction error can be computed as a solution of convex optimization problems and can be embedded into the IMDP abstraction. This is later used in the synthesis step over both finite- and infinite-horizon specifications, mitigating the known state-space explosion problem. Our experimental validation of the new approach compared to existing abstraction-based approaches shows: (i) significant (orders of magnitude) reduction of the abstraction error; (ii) marked speed-ups; and (iii) boosted scalability, allowing in particular to verify models with more than 10 continuous variables.
We present a new method for the automated synthesis of safe and robust Proportional-Integral-Derivative (PID) controllers for stochastic hybrid systems. Despite their widespread use in industry, no automated method currently exists for deriving a PID
Stochastic HYPE is a novel process algebra that models stochastic, instantaneous and continuous behaviour. It develops the flow-based approach of the hybrid process algebra HYPE by replacing non-urgent events with events with exponentially-distribute
We present a sound and automated approach to synthesize safe digital feedback controllers for physical plants represented as linear, time invariant models. Models are given as dynamical equations with inputs, evolving over a continuous state space an
FAUST$^2$ is a software tool that generates formal abstractions of (possibly non-deterministic) discrete-time Markov processes (dtMP) defined over uncountable (continuous) state spaces. A dtMP model is specified in MATLAB and abstracted as a finite-s
We develop a compositional framework for formal synthesis of hybrid systems using the language of category theory. More specifically, we provide mutually compatible tools for hierarchical, sequential, and independent parallel composition. In our fram