ﻻ يوجد ملخص باللغة العربية
Algebras introduced by, or attributed to, Sugihara, Belnap, Meyer, and Church are representable as algebras of binary relations with set-theoretically defined operations. They are definitional reducts or subreducts of proper relation algebras. The representability of Sugihara matrices yields sound and complete set-theoretical semantics for R-mingle.
For any pair of ordinals $alpha<beta$, $sf CA_alpha$ denotes the class of cylindric algebras of dimension $alpha$, $sf RCA_{alpha}$ denote the class of representable $sf CA_alpha$s and $sf Nr_alpha CA_beta$ ($sf Ra CA_beta)$ denotes the class of $alp
We study some finite integral symmetric relation algebras whose forbidden cycles are all 2-cycles. These algebras arise from a finite field construction due to Comer. We consider conditions that allow other finite algebras to embed into these Comer a
Let 2<nleq l<m< omega. Let L_n denote first order logic restricted to the first n variables. We show that the omitting types theorem fails dramatically for the n--variable fragments of first order logic with respect to clique guarded semantics, and f
Robin Hirsch posed in 1996 the Really Big Complexity Problem: classify the computational complexity of the network satisfaction problem for all finite relation algebras $bf A$. We provide a complete classification for the case that $bf A$ is symmetri
In this article we investigate the notion and basic properties of Boolean algebras and prove the Stones representation theorem. The relations of Boolean algebras to logic and to set theory will be studied and, in particular, a neat proof of completen