ترغب بنشر مسار تعليمي؟ اضغط هنا

First measurement of the Hubble constant from a dark standard siren using the Dark Energy Survey galaxies and the LIGO/Virgo binary-black-hole merger GW170814

137   0   0.0 ( 0 )
 نشر من قبل Antonella Palmese
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a multi-messenger measurement of the Hubble constant H_0 using the binary-black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the LIGO/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black-hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black-hole merger. Our analysis results in $H_0 = 75.2^{+39.5}_{-32.4}~{rm km~s^{-1}~Mpc^{-1}}$, which is consistent with both SN Ia and CMB measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20,140] ${rm km~s^{-1}~Mpc^{-1}}$, and it depends on the assumed prior range. If we take a broader prior of [10,220] ${rm km~s^{-1}~Mpc^{-1}}$, we find $H_0 = 78^{+ 96}_{-24}~{rm km~s^{-1}~Mpc^{-1}}$ ($57%$ of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on $H_0$.

قيم البحث

اقرأ أيضاً

We present a measurement of the Hubble constant $H_0$ using the gravitational wave (GW) event GW190814, which resulted from the coalescence of a 23 $M_odot$ black hole with a 2.6 $M_odot$ compact object, as a standard siren. No compelling electromagn etic counterpart has been identified for this event, thus our analysis accounts for thousands of potential host galaxies within a statistical framework. The redshift information is obtained from the photometric redshift (photo-$z$) catalog from the Dark Energy Survey. The luminosity distance is provided by the LIGO/Virgo gravitational wave sky map. Since this GW event has the second-smallest localization volume after GW170817, GW190814 is likely to provide the best constraint on cosmology from a single standard siren without identifying an electromagnetic counterpart. Our analysis uses photo-$z$ probability distribution functions and corrects for photo-$z$ biases. We also reanalyze the binary-black hole GW170814 within this updated framework. We explore how our findings impact the $H_0$ constraints from GW170817, the only GW merger associated with a unique host galaxy. From a combination of GW190814, GW170814 and GW170817, our analysis yields $H_0 = 72.0^{+ 12}_{- 8.2 }~{rm km~s^{-1}~Mpc^{-1}}$ (68% Highest Density Interval, HDI) for a prior in $H_0$ uniform between $[20,140]~{rm km~s^{-1}~Mpc^{-1}}$. The addition of GW190814 and GW170814 to GW170817 improves the 68% HDI from GW170817 alone by $sim 18%$, showing how well-localized mergers without counterparts can provide a significant contribution to standard siren measurements, provided that a complete galaxy catalog is available at the location of the event.
We present an improved measurement of the Hubble constant (H_0) using the inverse distance ladder method, which adds the information from 207 Type Ia supernovae (SNe Ia) from the Dark Energy Survey (DES) at redshift 0.018 < z < 0.85 to existing dista nce measurements of 122 low redshift (z < 0.07) SNe Ia (Low-z) and measurements of Baryon Acoustic Oscillations (BAOs). Whereas traditional measurements of H_0 with SNe Ia use a distance ladder of parallax and Cepheid variable stars, the inverse distance ladder relies on absolute distance measurements from the BAOs to calibrate the intrinsic magnitude of the SNe Ia. We find H_0 = 67.8 +/- 1.3 km s-1 Mpc-1 (statistical and systematic uncertainties, 68% confidence). Our measurement makes minimal assumptions about the underlying cosmological model, and our analysis was blinded to reduce confirmation bias. We examine possible systematic uncertainties and all are below the statistical uncertainties. Our H_0 value is consistent with estimates derived from the Cosmic Microwave Background assuming a LCDM universe (Planck Collaboration et al. 2018).
The detection of GW170817 in both gravitational waves and electromagnetic waves heralds the age of gravitational-wave multi-messenger astronomy. On 17 August 2017 the Advanced LIGO and Virgo detectors observed GW170817, a strong signal from the merge r of a binary neutron-star system. Less than 2 seconds after the merger, a gamma-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source. This sky region was subsequently observed by optical astronomy facilities, resulting in the identification of an optical transient signal within $sim 10$ arcsec of the galaxy NGC 4993. These multi-messenger observations allow us to use GW170817 as a standard siren, the gravitational-wave analog of an astronomical standard candle, to measure the Hubble constant. This quantity, which represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Our measurement combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using electromagnetic data. This approach does not require any form of cosmic distance ladder; the gravitational wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be $70.0^{+12.0}_{-8.0} , mathrm{km} , mathrm{s}^{-1} , mathrm{Mpc}^{-1}$ (maximum a posteriori and 68% credible interval). This is consistent with existing measurements, while being completely independent of them. Additional standard-siren measurements from future gravitational-wave sources will provide precision constraints of this important cosmological parameter.
Binary black hole (BBH) mergers found by the LIGO and Virgo detectors are of immense scientific interest to the astrophysics community, but are considered unlikely to be sources of electromagnetic emission. To test whether they have rapidly fading op tical counterparts, we used the Dark Energy Camera to perform an $i$-band search for the BBH merger GW170814, the first gravitational wave detected by three interferometers. The 87-deg$^2$ localization region (at 90% confidence) centered in the Dark Energy Survey (DES) footprint enabled us to image 86% of the probable sky area to a depth of $isim 23$ mag and provide the most comprehensive dataset to search for EM emission from BBH mergers. To identify candidates, we perform difference imaging with our search images and with templates from pre-existing DES images. The analysis strategy and selection requirements were designed to remove supernovae and to identify transients that decline in the first two epochs. We find two candidates, each of which is spatially coincident with a star or a high-redshift galaxy in the DES catalogs, and they are thus unlikely to be associated with GW170814. Our search finds no candidates associated with GW170814, disfavoring rapidly declining optical emission from BBH mergers brighter than $isim 23$ mag ($L_{rm optical} sim 5times10^{41}$ erg/s) 1-2 days after coalescence. In terms of GW sky map coverage, this is the most complete search for optical counterparts to BBH mergers to date
We perform a statistical standard siren analysis of GW170817. Our analysis does not utilize knowledge of NGC 4993 as the unique host galaxy of the optical counterpart to GW170817. Instead, we consider each galaxy within the GW170817 localization regi on as a potential host; combining the redshift from each galaxy with the distance estimate from GW170817 provides an estimate of the Hubble constant, $H_0$. We then combine the $H_0$ values from all the galaxies to provide a final measurement of $H_0$. We explore the dependence of our results on the thresholds by which galaxies are included in our sample, as well as the impact of weighting the galaxies by stellar mass and star-formation rate. Considering all galaxies brighter than $0.01 L^star_B$ as equally likely to host a BNS merger, we find $H_0= 76^{+48}_{-23}$ km s$^{-1}$ Mpc$^{-1}$ (maximum a posteriori and 68.3% highest density posterior interval; assuming a flat $H_0$ prior in the range $left[ 10, 220 right]$ km s$^{-1}$ Mpc$^{-1}$). Restricting only to galaxies brighter than $0.626 L^star_B$ tightens the measurement to $H_0= 77^{+37}_{-18}$ km s$^{-1}$ Mpc$^{-1}$. We show that weighting the host galaxies by stellar mass or star-formation rate provides entirely consistent results with potentially tighter constraints. While these statistical estimates are inferior to the value from the counterpart standard siren measurement utilizing NGC 4993 as the unique host, $H_0=76^{+19}_{-13}$ km s$^{-1}$ Mpc$^{-1}$ (determined from the same publicly available data), our analysis is a proof-of-principle demonstration of the statistical approach first proposed by Bernard Schutz over 30 years ago.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا