ﻻ يوجد ملخص باللغة العربية
We present a multi-messenger measurement of the Hubble constant H_0 using the binary-black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the LIGO/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black-hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black-hole merger. Our analysis results in $H_0 = 75.2^{+39.5}_{-32.4}~{rm km~s^{-1}~Mpc^{-1}}$, which is consistent with both SN Ia and CMB measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20,140] ${rm km~s^{-1}~Mpc^{-1}}$, and it depends on the assumed prior range. If we take a broader prior of [10,220] ${rm km~s^{-1}~Mpc^{-1}}$, we find $H_0 = 78^{+ 96}_{-24}~{rm km~s^{-1}~Mpc^{-1}}$ ($57%$ of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on $H_0$.
We present a measurement of the Hubble constant $H_0$ using the gravitational wave (GW) event GW190814, which resulted from the coalescence of a 23 $M_odot$ black hole with a 2.6 $M_odot$ compact object, as a standard siren. No compelling electromagn
We present an improved measurement of the Hubble constant (H_0) using the inverse distance ladder method, which adds the information from 207 Type Ia supernovae (SNe Ia) from the Dark Energy Survey (DES) at redshift 0.018 < z < 0.85 to existing dista
The detection of GW170817 in both gravitational waves and electromagnetic waves heralds the age of gravitational-wave multi-messenger astronomy. On 17 August 2017 the Advanced LIGO and Virgo detectors observed GW170817, a strong signal from the merge
Binary black hole (BBH) mergers found by the LIGO and Virgo detectors are of immense scientific interest to the astrophysics community, but are considered unlikely to be sources of electromagnetic emission. To test whether they have rapidly fading op
We perform a statistical standard siren analysis of GW170817. Our analysis does not utilize knowledge of NGC 4993 as the unique host galaxy of the optical counterpart to GW170817. Instead, we consider each galaxy within the GW170817 localization regi