ﻻ يوجد ملخص باللغة العربية
Spontaneous nonlinear excitation of geodesic acoustic mode (GAM) by toroidal Alfven eigenmode (TAE) is investigated using nonlinear gyrokinetic theory. It is found that, the nonlinear decay process depends on thermal ion beta value. Here, beta is the plasma thermal to magnetic pressure ratio. In the low-beta limit, TAE decays into a GAM and a lower TAE sideband in the toroidicity induced shear Alfven wave continuous spectrum gap; while in the high-beta limit, TAE decays into a GAM and a propagating kinetic TAE in the continuum. Both cases are investigated for the spontaneous decay conditions. The nonlinear saturation levels of both GAM and daughter wave are derived. The corresponding power balance and wave particle power transfer to thermal plasma are computed. Implications on thermal plasma heating are also discussed.
Gyrokinetic theory of nonlinear mode coupling as a mechanism for toroidal Alfven eigenmode (TAE) saturation in the fusion plasma related parameter regime is presented, including 1) para- metric decay of TAE into lower kinetic TAE (LKTAE) and geodesic
Nonlinear generation of high frequency mode (HFM) by toroidal Alfven eigenmode (TAE) observed in HL-2A tokamak is analyzed using nonlinear gyrokinetic theory. It is found that, the HFM can be dominated by $|nq-m|=1$ perturbations with predominantly i
There are two distinct phases in the evolution of drift wave envelope in the presence of zonal flow. A long-lived standing wave phase, which we call the Caviton, and a short-lived traveling wave phase (in radial direction) we call the Instanton. For
The two-field equations governing fully nonlinear dynamics of the drift wave (DW) and geodesic acoustic mode (GAM) in the toroidal geometry are derived in nonlinear gyrokinetic framework. Two stages with distinctive features are identified and analyz
Linear and nonlinear modelling of Alfvenic instabilities, most notably toroidal Alfven eigenmodes (TAEs), obtained by using the global nonlinear electromagnetic gyrokinetic model of the code ORB5 are presented for the 15 MA scenario of the ITER tokam