ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear excitation of geodesic acoustic mode by toroidal Alfven eigenmodes and impact on plasma performance

137   0   0.0 ( 0 )
 نشر من قبل Zhiyong Qiu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spontaneous nonlinear excitation of geodesic acoustic mode (GAM) by toroidal Alfven eigenmode (TAE) is investigated using nonlinear gyrokinetic theory. It is found that, the nonlinear decay process depends on thermal ion beta value. Here, beta is the plasma thermal to magnetic pressure ratio. In the low-beta limit, TAE decays into a GAM and a lower TAE sideband in the toroidicity induced shear Alfven wave continuous spectrum gap; while in the high-beta limit, TAE decays into a GAM and a propagating kinetic TAE in the continuum. Both cases are investigated for the spontaneous decay conditions. The nonlinear saturation levels of both GAM and daughter wave are derived. The corresponding power balance and wave particle power transfer to thermal plasma are computed. Implications on thermal plasma heating are also discussed.

قيم البحث

اقرأ أيضاً

Gyrokinetic theory of nonlinear mode coupling as a mechanism for toroidal Alfven eigenmode (TAE) saturation in the fusion plasma related parameter regime is presented, including 1) para- metric decay of TAE into lower kinetic TAE (LKTAE) and geodesic acoustic mode (GAM), and 2) enhanced TAE coupling to shear Alfven wave (SAW) continuum via ion induced scattering. Our theory shows that, for TAE saturation in the parameter range of practical interest, several processes with comparable scattering cross sections can be equally important.
Nonlinear generation of high frequency mode (HFM) by toroidal Alfven eigenmode (TAE) observed in HL-2A tokamak is analyzed using nonlinear gyrokinetic theory. It is found that, the HFM can be dominated by $|nq-m|=1$ perturbations with predominantly i deal magnetohydrodynamic if the two primary TAEs are co-propagating; while the HFM can be characterized by $nq-m=0$ electrostatic perturbations if the two primary TAEs are counter-propagating. Here, $n$ and $m$ are respectively the toroidal and poloidal mode numbers, and $q$ is the safety factor. The nonlinear process is sensitive to the equilibrium magnetic geometry of the device.
There are two distinct phases in the evolution of drift wave envelope in the presence of zonal flow. A long-lived standing wave phase, which we call the Caviton, and a short-lived traveling wave phase (in radial direction) we call the Instanton. For drift wave turbulence driven by ion temperature gradient mode (ITG), these two stages of dynamics were displayed in [Zhang Y Z, Liu Z Y, Xie T, Mahajan S M and Liu J 2017 Physics of Plasmas 24 122304]. In this paper we show that the dynamical attributes of ITG turbulence are readily replicated when the turbulence rotates in the electron direction; our model calculation deals specifically with the toroidal electron drift waves (EDW) in the well-known delta_e model. While the basic calculations are presented in parallel to the ITG counterpart, more emphasis is laid here on the motion of Instanton; several abrupt phenomena observed in tokamaks, such as intermittent excitation of geodesic acoustic mode (GAM) shown in this paper, could be attributed to the sudden and fast radial motion of Instanton. The calculation brings out the defining characteristics of the Instanton: it begins as a linear traveling wave right after the transition. Then, it evolves to a nonlinear stage with increasing frequency all the way to 20 kHz. The modulation to Reynolds stress in zonal flow equation will cause resonant excitation to GAM. The intermittency is shown due to the random phase mixing between multiple central rational surfaces in the reaction region.
The two-field equations governing fully nonlinear dynamics of the drift wave (DW) and geodesic acoustic mode (GAM) in the toroidal geometry are derived in nonlinear gyrokinetic framework. Two stages with distinctive features are identified and analyz ed. In the linear growth stage, the set of nonlinear equations can be reduced to the intensively studied parametric decay instability (PDI), accounting for the spontaneous resonant excitation of GAM by DW. The main results of previous works on spontaneous GAM excitation, e.g., the much enhanced GAM group velocity and the nonlinear growth rate of GAM, are reproduced from numerical solution of the two-field equations. In the fully nonlinear stage, soliton structures are observed to form due to the balancing of the self-trapping effect by the spontaneously excited GAM and kinetic dispersiveness of DW. The soliton structures enhance turbulence spreading from DW linearly unstable to stable region, exhibiting convective propagation instead of typical linear dispersive process, and is thus, expected to induce core-edge interaction and nonlocal transport.
Linear and nonlinear modelling of Alfvenic instabilities, most notably toroidal Alfven eigenmodes (TAEs), obtained by using the global nonlinear electromagnetic gyrokinetic model of the code ORB5 are presented for the 15 MA scenario of the ITER tokam ak. Linear simulations show that elliptic Alfven eigenmodes and odd-parity TAEs are only weakly damped but not excited by alpha particles, whose drive favours even-parity TAEs. Low mode number TAEs are found to be global, requiring global treatment. Nonlinearly, even with double the nominal EP density, single mode simulations lead to saturation with negligible EP transport however multi-mode simulations predict that with double the nominal EP density, enhanced saturation and significant EP redistribution will occur.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا