ﻻ يوجد ملخص باللغة العربية
Bacterial biofilms, surface-attached communities of cells, are in some respects similar to colloidal solids; both are densely packed with non-zero yield stresses. However, unlike non-living materials, bacteria reproduce and die, breaking mechanical equilibrium and inducing collective dynamic responses. We report experiments and theory investigating the motion of immotile Vibrio cholerae, which can kill each other and reproduce in biofilms. We vary viscosity by using bacterial variants that secrete different amounts of extracellular matrix polymers, but are otherwise identical. Unlike thermally-driven diffusion, in which diffusivity decreases with increased viscosity, we find that cellular motion mediated by death and reproduction is independent of viscosity over timescales relevant to bacterial reproduction. To understand this surprising result, we use two separate modeling approaches. First we perform explicitly mechanical simulations of one-dimensional chains of Voigt-Kelvin elements that can die and reproduce. Next, we perform an independent statistical approach, modeling Brownian motion with the classic Langevin equation under an effective temperature that depends on cellular division rate. The diffusion of cells in both approaches agrees quite well, supporting a kinetic interpretation for the effective temperature used here and developed in previous work. As the viscoelastic behavior of biofilms is believed to play a large role in their anomalous biological properties, such as antibiotic resistance, the independence of cellular diffusive motion --- important for biofilm growth and remodeling --- on viscoelastic properties likely holds ecological, medical, and industrial relevance.
Cilia and flagella often exhibit synchronized behavior; this includes phase locking, as seen in {it Chlamydomonas}, and metachronal wave formation in the respiratory cilia of higher organisms. Since the observations by Gray and Rothschild of phase sy
Solvent exchange is a simple method to produce surface nanodroplets on a substrate for a wide range of applications by displacing a solution of good solvent, poor solvent and oil (Solution A) by a poor solvent (Solution B). In this work, we show that
The dynamics of classical hard particles in a quasi one-dimensional channel were studied since the 1960s and used for explaining processes in chemistry, physics and biology and in applications. Here we show that in a previously un-described file made
The survival of many microorganisms, like textit{Leptospira} or textit{Spiroplasma} bacteria, can depend on their ability to navigate towards regions of favorable viscosity. While this ability, called viscotaxis, has been observed in several bacteria
In living cells, proteins combine 3D bulk diffusion and 1D sliding along the DNA to reach a target faster. This process is known as facilitated diffusion, and we investigate its dynamics in the physiologically relevant case of confined DNA. The confi