ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure-Property Relationship in Layered BaMn2Sb2 and Ba2Mn3Sb2O2

73   0   0.0 ( 0 )
 نشر من قبل Qiang Zhang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Layered transition-metal compounds have received great attention owing to their novel physical properties. Here, we present the structural, electronic, thermal, and magnetic properties of BaMn2Sb2 and Ba2Mn3Sb2O2 single crystals, both with the layered structure analogous to high-temperature superconductors. While the Mn moment in the MnSb4 tetrahedral environment forms G-type antiferromagnetic (AFM) ordering in both BaMn2Sb2 (TN1~443 K) and Ba2Mn3Sb2O2 (TN1~314 K), a short-range AFM order is found in the intercalated MnO2 layer at a much lower temperature (TN2~60 K) in Ba2Mn3Sb2O2. The directions of the ordered moments in these two magnetic sub-lattices of Ba2Mn3Sb2O2 are perpendicular to each other, even though the system is electrically conductive. This indicates that the large magnetic moments in these compounds are highly localized, leading to negligible coupling between MnSb4 and MnO2 layers in Ba2Mn3Sb2O2. These findings provide an insight into the structure-magnetism-based design principle for new superconductors.



قيم البحث

اقرأ أيضاً

Synchrotron X-ray diffraction patterns were measured and analyzed for a polycrystalline sample of the room-temperature ferromagnet Sr3.12Er0.88Co4O10.5 from 300 to 650 K, from which two structural phase transitions were found to occur successively. T he higher-temperature transition at 509 K is driven by ordering of the oxygen vacancies, which is closely related to the metallic state at high temperatures. The lower-temperature transition at 360 K is of first order, at which the ferromagnetic state suddenly appears with exhibiting a jump in magnetization and resistivity. Based on the refined structure, possible spin and orbital models for the magnetic order are proposed.
368 - S. Calder , A. V. Haglund , Y. Liu 2020
Compounds with two-dimensional (2D) layers of magnetic ions weakly connected by van der Waals bonding offer routes to enhance quantum behavior, stimulating both fundamental and applied interest. CrPS4 is one such magnetic van der Waals material, howe ver, it has undergone only limited investigation. Here we present a comprehensive series of neutron scattering measurements to determine the magnetic structure and exchange interactions. The observed magnetic excitations allow a high degree of constraint on the model parameters not normally associated with measurements on a powder sample. The results demonstrate the 2D nature of the magnetic interactions, while also revealing the importance of interactions along 1D chains within the layers. The subtle role of competing interactions is observed, which manifest in a non-trivial magnetic transition and a tunable magnetic structure in a small applied magnetic field through a spin-flop transition. Our results on the bulk compound provide insights that can be applied to an understanding of the behavior of reduced layer CrPS4.
A large variety of transport properties have been observed at the interface between the insulating oxides SrTiO3 and LaAlO3 such as insulation, 2D interface metallicity, 3D bulk metallicity, Kondo scattering, magnetism and superconductivity. The rela tion between the structure and the properties of the SrTiO3-LaAlO3 interface can be explained in a meaningful way by taking into account the relative contribution of three structural aspects: oxygen vacancies, structural deformations (including cation disorder) and electronic interface reconstruction. The emerging phase diagram is much richer than for related bulk oxides due to the occurrence of interface electronic reconstruction. The observation of this interface phenomenon is a display of recent advances in thin film deposition and characterization techniques, and provides an extension to the range of exceptional electronic properties of complex oxides.
We investigated the structure-property relationship of Co$_2$MnSi Heusler thin films upon the irradiation with He$^+$ ions. The variation of the crystal structure with increasing ion fluence has been probed using nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM), and associated with the corresponding changes of the magnetic behavior. A decrease of both the structural order and the moment in saturation is observed. Specifically, we detect a direct transition from a highly $L2_1$-ordered to a fully $A2$-disordered structure type and quantify the evolution of the $A2$ structural contribution as a function of ion fluence. Complementary TEM analysis reveals a spatially-resolved distribution of the $L2_1$ and $A2$ phases showing that the $A2$ disorder starts at the upper part of the films. The structural degradation in turn leads to a decreasing magnetic moment in saturation in response to the increasing fluence.
103 - Yuhan Zhang , Jingsi Qiao , Si Gao 2016
One of the basic assumptions in organic field-effect transistors, the most fundamental device unit in organic electronics, is that charge transport occurs two-dimensionally in the first few molecular layers near the dielectric interface. Although the mobility of bulk organic semiconductors has increased dramatically, direct probing of intrinsic charge transport in the two-dimensional limit has not been possible due to excessive disorders and traps in ultrathin organic thin films. Here, highly ordered mono- to tetra-layer pentacene crystals are realized by van der Waals (vdW) epitaxy on hexagonal BN. We find that the charge transport is dominated by hopping in the first conductive layer, but transforms to band-like in subsequent layers. Such abrupt phase transition is attributed to strong modulation of the molecular packing by interfacial vdW interactions, as corroborated by quantitative structural characterization and density functional theory calculations. The structural modulation becomes negligible beyond the second conductive layer, leading to a mobility saturation thickness of only ~3nm. Highly ordered organic ultrathin films provide a platform for new physics and device structures (such as heterostructures and quantum wells) that are not possible in conventional bulk crystals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا