ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Chandra survey of the Small Magellanic Cloud. III. Formation efficiency of High-Mass X-ray binaries

79   0   0.0 ( 0 )
 نشر من قبل Vallia Antoniou
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have compiled the most complete census of High-Mass X-ray Binaries (HMXBs) in the Small Magellanic Cloud with the aim to investigate the formation efficiency of young accreting binaries in its low metallicity environment. In total, we use 127 X-ray sources with detections in our chandra X-ray Visionary Program (XVP), supplemented by 14 additional (likely and confirmed) HMXBs identified by cite{2016A&A...586A..81H} that fall within the XVP area, but are not either detected in our survey (9 sources) or matched with any XVP source that has at least one OB counterpart in the OGLE-III catalog (5 sources). Specifically, we examine the number ratio of the HMXBs [N(HMXBs)] to {it (a)} the number of OB stars, {it (b)} the local star-formation rate (SFR), and {it (c)} the stellar mass produced during the specific star-formation burst, all as a function of the age of their parent stellar populations. Each of these indicators serves a different role, but in all cases we find that the HMXB formation efficiency increases as a function of time (following a burst of star formation) up to $sim$40--60,Myr, and then gradually decreases. The peak formation efficiency N(HMXB)/SFR is (49 $pm$ 14) $[10^{-5}~{rm M_{odot}/yr}]^{-1}$, in good agreement with previous estimates of the average formation efficiency in the broad $sim$20--60,Myr age range. The frequency of HMXBs is a factor of 8$times$ higher than at $sim$10,Myr, and 4$times$ higher than at $sim$260,Myr, i.e. at earlier and later epochs, respectively.



قيم البحث

اقرأ أيضاً

The last comprehensive catalogue of high-mass X-ray binaries in the Small Magellanic Cloud (SMC) was published about ten years ago. Since then new such systems were discovered, mainly by X-ray observations with Chandra and XMM-Newton. For the majorit y of the proposed HMXBs in the SMC no X-ray pulsations were discovered as yet, and unless other properties of the X-ray source and/or the optical counterpart confirm their HMXB nature, they remain only candidate HMXBs. From a literature search we collected a catalogue of 148 confirmed and candidate HMXBs in the SMC and investigated their properties to shed light on their real nature. Based on the sample of well-established HMXBs (the pulsars), we investigated which observed properties are most appropriate for a reliable classification. We defined different levels of confidence for a genuine HMXB based on spectral and temporal characteristics of the X-ray sources and colour-magnitude diagrams from the optical to the infrared of their likely counterparts. We also took the uncertainty in the X-ray position into account. We identify 27 objects that probably are misidentified because they lack an infrared excess of the proposed counterpart. They were mainly X-ray sources with a large positional uncertainty. This is supported by additional information obtained from more recent observations. Our catalogue comprises 121 relatively high-confidence HMXBs (the vast majority with Be companion stars). About half of the objects show X-ray pulsations, while for the rest no pulsations are known as yet. A comparison of the two subsamples suggests that long pulse periods in excess of a few 100 s are expected for the non-pulsars, which are most likely undetected because of aperiodic variability on similar timescales and insufficiently long X-ray observations. (abbreviated)
245 - K.E. McGowan 2007
We have detected 523 sources in a survey of the Small Magellanic Cloud (SMC) Wing with Chandra. By cross-correlating the X-ray data with optical and near-infrared catalogues we have found 300 matches. Using a technique that combines X-ray colours and X-ray to optical flux ratios we have been able to assign preliminary classifications to 265 of the objects. Our identifications include four pulsars, one high-mass X-ray binary (HMXB) candidate, 34 stars and 185 active galactic nuclei (AGNs). In addition, we have classified 32 sources as hard AGNs which are likely absorbed by local gas and dust, and nine soft AGNs whose nature is still unclear. Considering the abundance of HMXBs discovered so far in the Bar of the SMC the number that we have detected in the Wing is low.
398 - Arash Bodaghee 2021
We present the two-point cross-correlation function between high-mass X-ray binaries (HMXBs) in the Small Magellanic Cloud (SMC) and their likely birthplaces (OB Associations: OBAs). This function compares the spatial correlation between the observed HMXB and OBA populations against mock catalogs in which the members are distributed randomly across the sky. A significant correlation (15 sigma) is found for the HMXB and OBA populations when compared with a randomized catalog in which the OBAs are distributed uniformly over the SMC. A less significant correlation (4 sigma) is found for a randomized catalog of OBAs built with a bootstrap method. However, no significant correlation is detected when the randomized catalogs assume the form of a Gaussian ellipsoid or a distribution that reflects the star-formation history from 40 Myr ago. Based on their observed distributions and assuming a range of migration timescales, we infer that the average value of the kick velocity inherited by an HMXB during the formation of its compact object is 2-34 km/s. This is considerably less than the value obtained for their counterparts in the Milky Way hinting that the galactic environment affecting stellar evolution plays a role in setting the average kick velocity of HMXBs.
254 - Sylvain Chaty 2011
The aim of this review is to describe the nature, formation and evolution of the three kinds of high mass X-ray binary (HMXB) population: i. systems hosting Be stars (BeHMXBs), ii. systems accreting the stellar wind of supergiant stars (sgHMXBs), and iii. supergiant stars overflowing their Roche lobe. There are now many new observations, from the high-energy side (mainly from the INTEGRAL satellite), complemented by multi-wavelength observations (mainly in the optical, near and mid-infrared from ESO facilities), showing that a new population of supergiant HMXBs has been recently revealed. New observations also suggest the existence of evolutionary links between Be and stellar wind accreting supergiant X-ray binaries. I describe here the observational facts about the different categories of HMXBs, discuss the different models of accretion in these sources (e.g. transitory accretion disc versus clumpy winds), show the evidences of a link between different kinds of HMXBs, and finally compare observations with population synthesis models.
175 - G. Novara 2011
Many of the high mass X-ray binaries (HMXRBs) discovered in recent years in our Galaxy are characterized by a high absorption, most likely intrinsic to the system, which hampers their detection at the softest X-ray energies. We have undertaken a sear ch for highly-absorbed X-ray sources in the Small Magellanic Cloud (SMC) with a systematic analysis of 62 XMM-Newton SMC observations. We obtained a sample of 30 sources showing evidence for an equivalent hydrogen column density larger than 3x10^23 cm^-2. Five of these sources are clearly identified as HMXRBs: four were already known (including three X-ray pulsars) and one, XMM J005605.8-720012, reported here for the first time. For the latter, we present optical spectroscopy confirming the association with a Be star in the SMC. The other sources in our sample have optical counterparts fainter than magnitude ~16 in the V band, and many of them have possible NIR counterparts consistent with highly reddened early type stars in the SMC. While their number is broadly consistent with the expected population of background highly-absorbed active galactic nuclei, a few of them could be HMXRBs in which an early type companion is severely reddened by local material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا