ترغب بنشر مسار تعليمي؟ اضغط هنا

Ridges in p-A (and pp) collisions

114   0   0.0 ( 0 )
 نشر من قبل Alice Ohlson
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Alice Ohlson




اسأل ChatGPT حول البحث

Correlations between particles separated by several units of pseudorapidity were discovered in high-multiplicity pp and p-Pb collisions at the LHC. These long-range structures observed in two-particle correlation functions are reminiscent of features seen in Pb-Pb collisions, where they are often viewed as a signature of collective behavior and the formation of a quark-gluon plasma (QGP). Therefore, the discovery of these `ridges in small systems has implications for the study of collectivity in small systems as well as in heavy-ion collisions. The ridges in pp and p-Pb collisions have been studied in the ALICE, ATLAS, CMS, and LHCb experiments to characterize the $p_{rm{T}}$-, $eta$-, and multiplicity-dependences of the ridge yield, as well as its particle composition.

قيم البحث

اقرأ أيضاً

384 - Alice Ohlson 2019
Measurements made by the ALICE Collaboration of single- and two-particle distributions in high-energy pp and p-Pb collisions are used to characterize the interactions in small collision systems, tune models of particle production in QCD, and serve as a baseline for heavy-ion observables. The measurements of charged-particle multiplicity density, $langle dN_{ch}/detarangle$, and multiplicity distributions are shown in pp and p-Pb collisions, including data from the top center-of-mass energy achieved at the Large Hadron Collider (LHC), $sqrt{s}$ = 13 TeV. Two-particle angular correlations in p-Pb collisions are studied in detail to investigate long-range correlations in pseudorapidity which are reminiscent of structures previously thought unique to heavy-ion collisions.
211 - E. Scomparin 2017
Thirty years ago, the suppression of quarkonium production in heavy-ion collisions was first proposed as an unambiguous signature for the formation of a Quark-Gluon Plasma. Recent results from the LHC run 2 have led to an unprecedented level of preci sion on this observable and, together with new data from RHIC, are providing an accurate picture of the influence of the medium created in nuclear collisions on the various charmonium (J/$psi$, $psi$(2S)) and bottomonium ($Upsilon(1S)$, $Upsilon(2S)$, $Upsilon(3S)$) states, studied via their decay into lepton pairs. In this contribution, I will review the new results presented at Quark Matter 2017, emphasizing their relation with previous experimental observations and comparing them, where possible, with theoretical calculations.
Dihadron and isolated direct photon-hadron angular correlations have been measured in $p$+$p$ and $p$+A collisions to investigate possible effects from transverse-momentum-dependent factorization breaking due to color exchange between partons involve d in the hard scattering and the proton remnants. The correlations are sensitive to nonperturbative initial-state and final-state transverse momentum $k_T$ and $j_T$ in the azimuthal nearly back-to-back region $Delta phi sim pi$. In this region, transverse-momentum-dependent evolution can be studied when several different hard scales are measured. To have sensitivity to small transverse momentum scales, nonperturbative momentum widths of pout, the out-of-plane transverse momentum component perpendicular to the trigger particle, are measured. To quantify the magnitude of any transverse-momentum-dependent factorization breaking effects, calculations will need to be performed for comparison.
The mass dependence plays a significant role in the yield enhancement or suppression of hadrons in pp and p-Pb collisions at the LHC energies. This has been observed by parameterizing the variation of yield ratios between any two hadrons with event c harged-particle multiplicity using a single empirical function. We notice that this variation is independent of all quantum numbers and solely depends on masses of hadrons and masses of their valence quarks. The function shows that the amount of quark deconfinement increases with event multiplicity, and the quark coalescence favours more the production of heavier hadrons compared to lighter ones.
97 - Roy A. Lacey 2016
The pseudorapidity density (dN/deta) for p+p, p+A and A+A(B) collisions, and the mean multiplicity <Nch> for ee, ep, and p+p collisions, are studied for an inclusive range of beam energies (Root_s). Characteristic scaling patterns are observed for bo th dN/deta and <Nch>, consistent with a thermal particle production mechanism for the bulk of the soft particles produced in all of these systems. They also validate an essential role for quark participants in these collisions. The scaled values for dN/deta and <Nch> are observed to factorize into contributions which depend on log(Root_s) and the number of nucleon or quark participant pairs (Npp). Quantification of these contributions give expressions which serve to systematize dN/deta and <Nch> measurements spanning nearly four orders of magnitude in Root_s, and to predict their values as a function of Root_s and Npp.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا