ﻻ يوجد ملخص باللغة العربية
An all-at-once linear system arising from the nonlinear tempered fractional diffusion equation with variable coefficients is studied. Firstly, the nonlinear and linearized implicit schemes are proposed to approximate such the nonlinear equation with continuous/discontinuous coefficients. The stabilities and convergences of the two schemes are proved under several suitable assumptions, and numerical examples show that the convergence orders of these two schemes are $1$ in both time and space. Secondly, a nonlinear all-at-once system is derived based on the nonlinear implicit scheme, which may suitable for parallel computations. Newtons method, whose initial value is obtained by interpolating the solution of the linearized implicit scheme on the coarse space, is chosen to solve such the nonlinear all-at-once system. To accelerate the speed of solving the Jacobian equations appeared in Newtons method, a robust preconditioner is developed and analyzed. Numerical examples are reported to demonstrate the effectiveness of our proposed preconditioner. Meanwhile, they also imply that such the initial guess for Newtons method is more suitable.
Time-space fractional Bloch-Torrey equations are developed by some researchers to investigate the relationship between diffusion and fractional-order dynamics. In this paper, we first propose a second-order scheme for this equation by employing the r
The tempered fractional diffusion equation could be recognized as the generalization of the classic fractional diffusion equation that the truncation effects are included in the bounded domains. This paper focuses on designing the high order fully di
We present a computational study of several preconditioning techniques for the GMRES algorithm applied to the stochastic diffusion equation with a lognormal coefficient discretized with the stochastic Galerkin method. The clear block structure of the
In this paper, a second-order backward difference formula (abbr. BDF2) is used to approximate first-order time partial derivative, the Riesz fractional derivatives are approximated by fourth-order compact operators, a class of new alternating-directi
In this paper, we provide a framework of designing the local discontinuous Galerkin scheme for integral fractional Laplacian $(-Delta)^{s}$ with $sin(0,1)$ in two dimensions. We theoretically prove and numerically verify the numerical stability and c