ترغب بنشر مسار تعليمي؟ اضغط هنا

Radial velocity measurements from LAMOST medium-resolution spectroscopic observations: A pointing towards the Kepler field

362   0   0.0 ( 0 )
 نشر من قبل Weikai Zong Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radial velocity is one of key measurements in understanding the fundamental properties of stars, stellar clusters and the Galaxy. A plate of stars in the Kepler field were observed in May of 2018 with the medium-resolution spectrographs of LAMOST, aiming to test the performance of this new system which is the upgraded equipment of LAMOST after the first five-year regular survey.We present our analysis on the radial velocity measurements (RVs) derived from these data. The results show that slight and significant systematic errors exist among the RVs obtained from the spectra collected by different spectrographs and exposures, respectively. After correcting the systematic errors with different techniques, the precision of RVs reaches ~1.3, ~1.0, ~0.5 and ~0.3 km/s at S/Nr = 10, 20, 50, and 100, respectively. Comparing with the RVs of the standard stars of the APOGEE survey, our RVs are calibrated with a zero-point shift of ~7 km/s. The results indicate that the LAMOST medium-resolution spectroscopic system may provide RVs in a reasonable accuracy and precision for the selected targets.

قيم البحث

اقرأ أيضاً

Accurate radial velocity determinations of optical emission lines (i.e. [NII]${lambda}{lambda}$6548,6584, H${alpha}$, and [SII]${lambda}{lambda}$6717,6731) are very important for investigating the kinematics and dynamics properties of nebulae. The se cond stage survey program of Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST) has started a sub-survey of nebulae (MRS-N) which will spectroscopically observe the optical emission lines of a large sample of nebulae near the Galactic plane. Until now, 15 MRS-N plates have been observed from 2017 September to 2019 June. Based on fitting the sky emission lines in the red band spectra of MRS-N, we investigate the precision of wavelength calibration and find there are systematic deviations of radial velocities (RVs) from $sim$0.2 to 4 km/s for different plates. Especially for the plates obtained in 2018 March, the systematic deviations of RVs can be as large as $sim$4 km/s, which then go down to $sim$0.2-0.5 km/s at the end of 2018 and January 2019. A RVs calibration function is proposed for these MRS-N plates, which can simultaneously and successfully calibration the systematic deviations and improve the precision of RVs.
120 - R. Wang , A.-L. Luo , J.-J. Chen 2019
The radial velocity (RV) is a basic physical quantity which can be determined through Doppler shift of the spectrum of a star. The precision of RV measurement depends on the resolution of the spectrum we used and the accuracy of wavelength calibratio n. In this work, radial velocities of LAMOST-II medium resolution (R ~ 7500) spectra are measured for 1,594,956 spectra (each spectrum has two wavebands) through matching with templates. A set of RV standard stars are used to recalibrate the zero point of the measurement, and some reference sets with RVs derived from medium/high-resolution observations are used to evaluate the accuracy of the measurement. Comparing with reference sets, the accuracy of our measurement can get 0.0227 km s/1 with respect to radial velocities standard stars. The intrinsic precision is estimated with the multiple observations of single stars, which can achieve to 1.36 km s/1,1.08 km s/1, 0.91 km s/1 for the spectra at signal-to-noise levels of 10, 20, 50, respectively.
Phase RNum{2} of the LAMOST-{sl Kepler/K}2 survey (LK-MRS), initiated in 2018, aims at collecting medium-resolution spectra ($Rsim7,500$; hereafter MRS) for more than $50,000$ stars with multiple visits ($sim60$ epochs) over a period of 5 years (2018 September to 2023 June). We selected 20 footprints distributed across the {sl Kepler} field and six {sl K}2 campaigns, with each plate containing a number of stars ranging from $sim2,000$ to $sim 3,000$. During the first year of observations, the LK-MRS has already collected $sim280,000$ and $sim369,000$ high-quality spectra in the blue and red wavelength range, respectively. The atmospheric parameters and radial velocities for $sim259,000$ spectra of $21,053$ targets were successfully calculated by the LASP pipeline. The internal uncertainties for the effective temperature, surface gravity, metallicity, and radial velocity are found to be $100$,K, $0.15$,dex, $0.09$,dex, and $1.00$,km,s$^{-1}$, respectively. We found $14,997$, $20,091$, and $1,514$ stars in common with the targets from the LAMOST low-resolution survey (LRS), GAIA and APOGEE, respectively, corresponding to a fraction of $sim70%$, $sim95%$ and $sim7.2%$. In general, the parameters derived from LK-MRS spectra are consistent with those obtained from the LRS and APOGEE spectra, but the scatter increases as the surface gravity decreases when comparing with the measurements from APOGEE. A large discrepancy is found with the GAIA values of the effective temperature. The comparisons of radial velocities of LK-MRS to GAIA and LK-MRS to APOGEE nearly follow an Gaussian distribution with a mean $musim1.10$ and $0.73$,km,s$^{-1}$, respectively.
The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) started median-resolution spectroscopic (MRS, R$sim$7500) survey since October 2018. The main scientific goals of MRS, including binary stars, pulsators, and other variable stars are launched with a time-domain spectroscopic survey. However, the systematic errors, including the bias induced from wavelength calibration and the systematic difference between different spectrographs have to be carefully considered during radial velocity measurement. In this work, we provide a technique to correct the systematics in the wavelength calibration based on the relative radial velocity measurements from LAMOST MRS spectra. We show that, for the stars with multi-epoch spectra, the systematic bias which is induced from the exposures of different nights can be well corrected for LAMOST MRS in each spectrograph. And the precision of radial velocity zero-point of multi-epoch time-domain observations reaches below 0.5 km/s . As a by-product, we also give the constant star candidates, which can be the secondary radial-velocity standard star candidates of LAMOST MRS time-domain surveys.
The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) at the Xinglong observatory in China is a new 4-m telescope equipped with 4,000 optical fibers. In 2010, we initiated the LAMOST-Kepler project. We requested to observe the full f ield-of-view of the nominal Kepler mission with the LAMOST to collect low-resolution spectra for as many objects from the KIC10 catalogue as possible. So far, 12 of the 14 requested LAMOST fields have been observed resulting in more than 68,000 low-resolution spectra. Our preliminary results show that the stellar parameters derived from the LAMOST spectra are in good agreement with those found in the literature based on high-resolution spectroscopy. The LAMOST data allows to distinguish dwarfs from giants and can provide the projected rotational velocity for very fast rotators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا