ﻻ يوجد ملخص باللغة العربية
We introduce an extension of team semantics which provides a framework for the logic of manipulationist theories of causation based on structural equation models, such as Woodwards and Pearls; our causal teams incorporate (partial or total) information about functional dependencies that are invariant under interventions. We give a unified treatment of observational and causal aspects of causal models by isolating two operators on causal teams which correspond, respectively, to conditioning and to interventionist counterfactual implication. We then introduce formal languages for deterministic and probabilistic causal discourse, and show how various notions of cause (e.g. direct and total causes) may be defined in them. Through the tuning of various constraints on structural equations (recursivity, existence and uniqueness of solutions, full or partial definition of the functions), our framework can capture different causal models. We give an overview of the inferential aspects of the recursive, fully defined case; and we dedicate some attention to the recursive, partially defined case, which involves a shift of attention towards nonclassical truth values.
We apply a paraconsistent logic to reason about fractions.
We study the logic obtained by endowing the language of first-order arithmetic with second-order measure quantifiers. This new kind of quantification allows us to express that the argument formula is true in a certain portion of all possible interpre
We consider the set of infinite real traces, over a dependence alphabet (Gamma, D) with no isolated letter, equipped with the topology induced by the prefix metric. We then prove that all rational languages of infinite real traces are analytic sets a
We consider approaches for causal semantics of Petri nets, explicitly representing dependencies between transition occurrences. For one-safe nets or condition/event-systems, the notion of process as defined by Carl Adam Petri provides a notion of a r
We consider the proof complexity of the minimal complete fragment, KS, of standard deep inference systems for propositional logic. To examine the size of proofs we employ atomic flows, diagrams that trace structural changes through a proof but ignore