ترغب بنشر مسار تعليمي؟ اضغط هنا

Vector and Line Quantization for Billion-scale Similarity Search on GPUs

54   0   0.0 ( 0 )
 نشر من قبل Yuan-Fang Li
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Billion-scale high-dimensional approximate nearest neighbour (ANN) search has become an important problem for searching similar objects among the vast amount of images and videos available online. The existing ANN methods are usually characterized by their specific indexing structures, including the inverted index and the inverted multi-index structure. The inverted index structure is amenable to GPU-based implementations, and the state-of-the-art systems such as Faiss are able to exploit the massive parallelism offered by GPUs. However, the inverted index requires high memory overhead to index the dataset effectively. The inverted multi-index structure is difficult to implement for GPUs, and also ineffective in dealing with database with different data distributions. In this paper we propose a novel hierarchical inverted index structure generated by vector and line quantization methods. Our quantization method improves both search efficiency and accuracy, while maintaining comparable memory consumption. This is achieved by reducing search space and increasing the number of indexed regions. We introduce a new ANN search system, VLQ-ADC, that is based on the proposed inverted index, and perform extensive evaluation on two public billion-scale benchmark datasets SIFT1B and DEEP1B. Our evaluation shows that VLQ-ADC significantly outperforms the state-of-the-art GPU- and CPU-based systems in terms of both accuracy and search speed. The source code of VLQ-ADC is available at https://github.com/zjuchenwei/vector-line-quantization.

قيم البحث

اقرأ أيضاً

Similarity search finds application in specialized database systems handling complex data such as images or videos, which are typically represented by high-dimensional features and require specific indexing structures. This paper tackles the problem of better utilizing GPUs for this task. While GPUs excel at data-parallel tasks, prior approaches are bottlenecked by algorithms that expose less parallelism, such as k-min selection, or make poor use of the memory hierarchy. We propose a design for k-selection that operates at up to 55% of theoretical peak performance, enabling a nearest neighbor implementation that is 8.5x faster than prior GPU state of the art. We apply it in different similarity search scenarios, by proposing optimized design for brute-force, approximate and compressed-domain search based on product quantization. In all these setups, we outperform the state of the art by large margins. Our implementation enables the construction of a high accuracy k-NN graph on 95 million images from the Yfcc100M dataset in 35 minutes, and of a graph connecting 1 billion vectors in less than 12 hours on 4 Maxwell Titan X GPUs. We have open-sourced our approach for the sake of comparison and reproducibility.
79 - Shicong Liu , Hongtao Lu 2016
Recent advance of large scale similarity search involves using deeply learned representations to improve the search accuracy and use vector quantization methods to increase the search speed. However, how to learn deep representations that strongly pr eserve similarities between data pairs and can be accurately quantized via vector quantization remains a challenging task. Existing methods simply leverage quantization loss and similarity loss, which result in unexpectedly biased back-propagating gradients and affect the search performances. To this end, we propose a novel gradient snapping layer (GSL) to directly regularize the back-propagating gradient towards a neighboring codeword, the generated gradients are un-biased for reducing similarity loss and also propel the learned representations to be accurately quantized. Joint deep representation and vector quantization learning can be easily performed by alternatively optimize the quantization codebook and the deep neural network. The proposed framework is compatible with various existing vector quantization approaches. Experimental results demonstrate that the proposed framework is effective, flexible and outperforms the state-of-the-art large scale similarity search methods.
Quantization methods have been introduced to perform large scale approximate nearest search tasks. Residual Vector Quantization (RVQ) is one of the effective quantization methods. RVQ uses a multi-stage codebook learning scheme to lower the quantizat ion error stage by stage. However, there are two major limitations for RVQ when applied to on high-dimensional approximate nearest neighbor search: 1. The performance gain diminishes quickly with added stages. 2. Encoding a vector with RVQ is actually NP-hard. In this paper, we propose an improved residual vector quantization (IRVQ) method, our IRVQ learns codebook with a hybrid method of subspace clustering and warm-started k-means on each stage to prevent performance gain from dropping, and uses a multi-path encoding scheme to encode a vector with lower distortion. Experimental results on the benchmark datasets show that our method gives substantially improves RVQ and delivers better performance compared to the state-of-the-art.
Vector quantization is an essential tool for tasks involving large scale data, for example, large scale similarity search, which is crucial for content-based information retrieval and analysis. In this paper, we propose a novel vector quantization fr amework that iteratively minimizes quantization error. First, we provide a detailed review on a relevant vector quantization method named textit{residual vector quantization} (RVQ). Next, we propose textit{generalized residual vector quantization} (GRVQ) to further improve over RVQ. Many vector quantization methods can be viewed as the special cases of our proposed framework. We evaluate GRVQ on several large scale benchmark datasets for large scale search, classification and object retrieval. We compared GRVQ with existing methods in detail. Extensive experiments demonstrate our GRVQ framework substantially outperforms existing methods in term of quantization accuracy and computation efficiency.
Hierarchical matrices are space and time efficient representations of dense matrices that exploit the low rank structure of matrix blocks at different levels of granularity. The hierarchically low rank block partitioning produces representations that can be stored and operated on in near-linear complexity instead of the usual polynomial complexity of dense matrices. In this paper, we present high performance implementations of matrix vector multiplication and compression operations for the $mathcal{H}^2$ variant of hierarchical matrices on GPUs. This variant exploits, in addition to the hierarchical block partitioning, hierarchical bases for the block representations and results in a scheme that requires only $O(n)$ storage and $O(n)$ complexity for the mat-vec and compression kernels. These two operations are at the core of algebraic operations for hierarchical matrices, the mat-vec being a ubiquitous operation in numerical algorithms while compression/recompression represents a key building block for other algebraic operations, which require periodic recompression during execution. The difficulties in developing efficient GPU algorithms come primarily from the irregular tree data structures that underlie the hierarchical representations, and the key to performance is to recast the computations on flattened trees in ways that allow batched linear algebra operations to be performed. This requires marshaling the irregularly laid out data in a way that allows them to be used by the batched routines. Marshaling operations only involve pointer arithmetic with no data movement and as a result have minimal overhead. Our numerical results on covariance matrices from 2D and 3D problems from spatial statistics show the high efficiency our routines achieve---over 550GB/s for the bandwidth-limited mat-vec and over 850GFLOPS/s in sustained performance for the compression on the P100 Pascal GPU.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا