ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistical inference for Bures-Wasserstein barycenters

227   0   0.0 ( 0 )
 نشر من قبل Alexandra Suvorikova
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we introduce the concept of Bures-Wasserstein barycenter $Q_*$, that is essentially a Frechet mean of some distribution $mathbb{P}$ supported on a subspace of positive semi-definite Hermitian operators $mathbb{H}_{+}(d)$. We allow a barycenter to be restricted to some affine subspace of $mathbb{H}_{+}(d)$ and provide conditions ensuring its existence and uniqueness. We also investigate convergence and concentration properties of an empirical counterpart of $Q_*$ in both Frobenius norm and Bures-Wasserstein distance, and explain, how obtained results are connected to optimal transportation theory and can be applied to statistical inference in quantum mechanics.



قيم البحث

اقرأ أيضاً

We provide statistical theory for conditional and unconditional Wasserstein generative adversarial networks (WGANs) in the framework of dependent observations. We prove upper bounds for the excess Bayes risk of the WGAN estimators with respect to a m odified Wasserstein-type distance. Furthermore, we formalize and derive statements on the weak convergence of the estimators and use them to develop confidence intervals for new observations. The theory is applied to the special case of high-dimensional time series forecasting. We analyze the behavior of the estimators in simulations based on synthetic data and investigate a real data example with temperature data. The dependency of the data is quantified with absolutely regular beta-mixing coefficients.
256 - Darina Dvinskikh 2021
In this thesis, we consider the Wasserstein barycenter problem of discrete probability measures from computational and statistical sides in two scenarios: (I) the measures are given and we need to compute their Wasserstein barycenter, and (ii) the me asures are generated from a probability distribution and we need to calculate the population barycenter of the distribution defined by the notion of Frechet mean. The statistical focus is estimating the sample size of measures necessary to calculate an approximation for Frechet mean (barycenter) of a probability distribution with a given precision. For empirical risk minimization approaches, the question of the regularization is also studied together with proposing a new regularization which contributes to the better complexity bounds in comparison with quadratic regularization. The computational focus is developing algorithms for calculating Wasserstein barycenters: both primal and dual algorithms which can be executed in a decentralized manner. The motivation for dual approaches is closed-forms for the dual formulation of entropy-regularized Wasserstein distances and their derivatives, whereas the primal formulation has closed-form expression only in some cases, e.g., for Gaussian measures. Moreover, the dual oracle returning the gradient of the dual representation for entropy-regularized Wasserstein distance can be computed for a cheaper price in comparison with the primal oracle returning the gradient of the entropy-regularized Wasserstein distance. The number of dual oracle calls, in this case, will also be less, i.e., the square root of the number of primal oracle calls. This explains the successful application of the first-order dual approaches for the Wasserstein barycenter problem.
In many applications, the dataset under investigation exhibits heterogeneous regimes that are more appropriately modeled using piece-wise linear models for each of the data segments separated by change-points. Although there have been much work on ch ange point linear regression for the low dimensional case, high-dimensional change point regression is severely underdeveloped. Motivated by the analysis of Minnesota House Price Index data, we propose a fully Bayesian framework for fitting changing linear regression models in high-dimensional settings. Using segment-specific shrinkage and diffusion priors, we deliver full posterior inference for the change points and simultaneously obtain posterior probabilities of variable selection in each segment via an efficient Gibbs sampler. Additionally, our method can detect an unknown number of change points and accommodate different variable selection constraints like grouping or partial selection. We substantiate the accuracy of our method using simulation experiments for a wide range of scenarios. We apply our approach for a macro-economic analysis of Minnesota house price index data. The results strongly favor the change point model over a homogeneous (no change point) high-dimensional regression model.
Image interpolation, or image morphing, refers to a visual transition between two (or more) input images. For such a transition to look visually appealing, its desirable properties are (i) to be smooth; (ii) to apply the minimal required change in th e image; and (iii) to seem real, avoiding unnatural artifacts in each image in the transition. To obtain a smooth and straightforward transition, one may adopt the well-known Wasserstein Barycenter Problem (WBP). While this approach guarantees minimal changes under the Wasserstein metric, the resulting images might seem unnatural. In this work, we propose a novel approach for image morphing that possesses all three desired properties. To this end, we define a constrained variant of the WBP that enforces the intermediate images to satisfy an image prior. We describe an algorithm that solves this problem and demonstrate it using the sparse prior and generative adversarial networks.
This paper gives a review of concentration inequalities which are widely employed in non-asymptotical analyses of mathematical statistics in a wide range of settings, from distribution-free to distribution-dependent, from sub-Gaussian to sub-exponent ial, sub-Gamma, and sub-Weibull random variables, and from the mean to the maximum concentration. This review provides results in these settings with some fresh new results. Given the increasing popularity of high-dimensional data and inference, results in the context of high-dimensional linear and Poisson regressions are also provided. We aim to illustrate the concentration inequalities with known constants and to improve existing bounds with sharper constants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا