ترغب بنشر مسار تعليمي؟ اضغط هنا

Hard X-ray spectroscopy of the itinerant magnets $R$Fe$_{4}$Sb$_{12}$ ($R=$Na, K, Ca, Sr, Ba)

171   0   0.0 ( 0 )
 نشر من قبل Fernando Garcia
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ordered states in itinerant magnets may be related to magnetic moments displaying some weak local moment characteristics, as in intermetallic compounds hosting transition metal coordination complexes. In this paper, we report on the Fe $K$-edge X-ray absorption spectroscopy (XAS) of the itinerant magnets $R$Fe$_{4}$Sb$_{12}$ ($R=$ Na, K, Ca, Sr, Ba), aiming at exploring the electronic and structural properties of the octahedral building block formed by Fe and the Sb ligands. We find evidence for strong hybridization between the Fe $3d$ and Sb $5p$ states at the Fermi level, giving experimental support to previous electronic structure calculations of the $R$Fe$_{4}$Sb$_{12}$ skutterudites. The electronic states derived from Fe 3$d$ Sb $5p$ mixing are shown to be either more occupied and/or less localized in the cases of the magnetically ordered systems, for which $R=$ Na or K, connecting the local Fe electronic structure to the itinerant magnetic properties. Moreover, the analysis of the extended region of the XAS spectra (EXAFS) suggests that bond disorder may be a more relevant parameter to explain the suppression of the ferromagnetic ordered state in CaFe$_{4}$Sb$_{12}$ than the decrease of the density of states.

قيم البحث

اقرأ أيضاً

A laboratory hard X-ray photoelectron spectroscopy (HXPS) system equipped with a monochromatic Cr K$alpha$ ($h u = 5414.7$ eV) X-ray source was applied to an investigation of the core-level electronic structure of La$_{1-x}$Sr$_x$MnO$_3$. No apprecia ble high binding-energy shoulder in the O $1s$ HXPS spectra were observed while an enhanced low binding-energy shoulder structure in the Mn $2p_{3/2}$ HXPS spectra were observed, both of which are manifestation of high bulk sensitivity. Such high bulk sensitivity enabled us to track the Mn $2p_{3/2}$ shoulder structure in the full range of $x$, giving us a new insight into the binding-energy shift of the Mn $2p_{3/2}$ core level. Comparisons with the results using the conventional laboratory XPS ($h u = 1486.6$ eV) as well as those using a synchrotron radiation source ($h u = 7939.9$ eV) demonstrate that HXPS is a powerful and convenient tool to analyze the bulk electronic structure of a host of different compounds.
X-ray magnetic circular dichroism (XMCD) measurements on single-crystal and powder samples of Ba$_{0.6}$K$_{0.4}$Mn$_{2}$As$_{2}$ show that the ferromagnetism below $T_{textrm{C}}approx$ 100 K arises in the As $4p$ conduction band. No XMCD signal is observed at the Mn x-ray absorption edges. Below $T_{textrm{C}}$, however, a clear XMCD signal is found at the As $K$ edge which increases with decreasing temperature. The XMCD signal is absent in data taken with the beam directed parallel to the crystallographic $textrm{c}$ axis indicating that the orbital magnetic moment lies in the basal plane of the tetragonal lattice. These results show that the previously reported itinerant ferromagnetism is associated with the As $4p$ conduction band and that distinct local-moment antiferromagnetism and itinerant ferromagnetism with perpendicular easy axes coexist in this compound at low temperature.
We present a detailed temperature dependent Raman light scattering study of optical phonons in Ba{1-x}K{x}Fe{2}As{2} (x ~ 0.28, superconducting Tc ~ 29 K), Sr{1-x}K{x}Fe{2}As{2} (x ~ 0.15, Tc ~ 29 K) and non-superconducting BaFe{2}As{2} single crysta ls. In all samples we observe a strong continuous narrowing of the Raman-active Fe and As vibrations upon cooling below the spin-density-wave transition Ts. We attribute this effect to the opening of the spin-density-wave gap. The electron-phonon linewidths inferred from these data greatly exceed the predictions of ab-initio density functional calculations without spin polarization, which may imply that local magnetic moments survive well above Ts. A first-order structural transition accompanying the spin-density-wave transition induces discontinuous jumps in the phonon frequencies. These anomalies are increasingly suppressed for higher potassium concentrations. We also observe subtle phonon anomalies at the superconducting transition temperature Tc, with a behavior qualitatively similar to that in the cuprate superconductors.
Topological nodal-line semimetals (NLSs) are unique materials, which harbor one-dimensional line nodes along with the so-called drumhead surface states arising from nearly dispersionless two dimensional surface bands. However, a direct observation of these drumhead surface states in the currently realized NLSs has remained elusive. Here, by using high-resolution angle-resolved photoemission spectroscopy (ARPES) along with parallel first principles calculations, we examine the topological characteristics of SrAs3 and CaAs3. SrAs3 is found to show the presence of a topological nodal-loop, while CaAs3 is found to lie near a topologically trivial phase. Our analysis reveals that the surface projections of the bulk nodal-points in SrAs3 are connected by drumhead surface states. Notably, the topological states in SrAs3 and CaAs3 are well separated from other irrelevant bands in the vicinity of the Fermi level. These compounds thus provide a hydrogen-like simple platform for developing an in-depth understanding of the quantum phase transitions of NLSs.
Quantum phase transitions (QPTs) have been studied extensively in correlated electron systems. Characterization of magnetism at QPTs has, however, been limited by the volume-integrated feature of neutron and magnetization measurements and by pressure uncertainties in NMR studies using powderized specimens. Overcoming these limitations, we performed muon spin relaxation ($mu$SR) measurements which have a unique sensitivity to volume fractions of magnetically ordered and paramagnetic regions, and studied QPTs from itinerant heli/ferro magnet to paramagnet in MnSi (single-crystal; varying pressure) and (Sr$_{1-x}$Ca$_{x}$)RuO$_{3}$ (ceramic specimens; varying $x$). Our results provide the first clear evidence that both cases are associated with spontaneous phase separation and suppression of dynamic critical behavior, revealed a slow but dynamic character of the ``partial order diffuse spin correlations in MnSi above the critical pressure, and, combined with other known results in heavy-fermion and cuprate systems, suggest a possibility that a majority of QPTs involve first-order transitions and/or phase separation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا