ترغب بنشر مسار تعليمي؟ اضغط هنا

An ALMA view of CS and SiS around oxygen-rich AGB stars

72   0   0.0 ( 0 )
 نشر من قبل Ta\\\"issa Danilovich
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We aim to determine the distributions of molecular SiS and CS in the circumstellar envelopes of oxygen-rich asymptotic giant branch stars and how these distributions differ between stars that lose mass at different rates. In this study we analyse ALMA observations of SiS and CS emission lines for three oxygen-rich galactic AGB stars: IK Tau, with a moderately high mass-loss rate of $5times10^{-6}$M$_odot$ yr$^{-1}$, and W Hya and R Dor with low mass loss rates of $sim1times10^{-7}$M$_odot$ yr$^{-1}$. These molecules are usually more abundant in carbon stars but the high sensitivity of ALMA allows us to detect their faint emission in the low mass-loss rate AGB stars. The high spatial resolution of ALMA also allows us to precisely determine the spatial distribution of these molecules in the circumstellar envelopes. We run radiative transfer models to calculate the molecular abundances and abundance distributions for each star. We find a spread of peak SiS abundances with $sim10^{-8}$ for R Dor, $sim10^{-7}$ for W Hya, and $sim3times10^{-6}$ for IK Tau relative to H$_2$. We find lower peak CS abundances of $sim7times10^{-9}$ for R Dor, $sim7times10^{-8}$ for W Hya and $sim4times10^{-7}$ for IK Tau, with some stratifications in the abundance distributions. For IK Tau we also calculate abundances for the detected isotopologues: C$^{34}$S, $^{29}$SiS, $^{30}$SiS, Si$^{33}$S, Si$^{34}$S, $^{29}$Si$^{34}$S, and $^{30}$Si$^{34}$S. Overall the isotopic ratios we derive for IK Tau suggest a lower metallicity than solar.



قيم البحث

اقرأ أيضاً

We surveyed 20 AGB stars of different chemical types using the APEX telescope, and combined this with an IRAM 30 m and APEX survey of CS and SiS emission towards over 30 S-type stars. For those stars with detections, we performed radiative transfer m odelling to determine abundances and abundance distributions. We detect CS towards all the surveyed carbon stars, some S-type stars, and the highest mass-loss rate oxygen-rich stars ($> 5times 10^{-6}$ Msol yr$^{-1}$). SiS is detected towards the highest mass-loss rate sources of all chemical types ($> 8times 10^{-7}$ Msol yr$^{-1}$). We find CS peak fractional abundances ranging from ~ $ 4times 10^{-7}$ to ~ $2times 10^{-5}$ for the carbon stars, from ~ $ 3times 10^{-8}$ to ~ $1times 10^{-7}$ for the oxygen-rich stars and from ~ $ 1times 10^{-7}$ to ~ $8times 10^{-6}$ for the S-type stars. We find SiS peak fractional abundances ranging from ~ $ 9times 10^{-6}$ to ~ $ 2times 10^{-5}$ for the carbon stars, from ~ $ 5times 10^{-7}$ to ~ $ 2times 10^{-6}$ for the oxygen-rich stars, and from ~ $ 2times 10^{-7}$ to ~ $ 2times 10^{-6}$ for the S-type stars. We derived Si$^{32}$S/Si$^{34}$S = 11.4 for AI Vol, the only star for which we had a reliable isotopologue detection. Overall, we find that wind density plays an important role in determining the chemical composition of AGB CSEs. It is seen that for oxygen-rich AGB stars both CS and SiS are detected only in the highest density circumstellar envelopes and their abundances are generally lower than for carbon-rich AGB stars by around an order of magnitude. For carbon-rich and S-type stars SiS was also only detected in the highest density circumstellar envelopes, while CS was detected consistently in all surveyed carbon stars and sporadically among the S-type stars.
We observed the AGB stars S Ori, GX Mon and R Cnc with the MIDI instrument at the VLTI. We compared the data to radiative transfer models of the dust shells, where the central stellar intensity profiles were described by dust-free dynamic model atmos pheres. We used Al2O3 and warm silicate grains. Our S Ori and R Cnc data could be well described by an Al2O3 dust shell alone, and our GX Mon data by a mix of an Al2O3 and a silicate shell. The best-fit parameters for S Ori and R Cnc included photospheric angular diameters Theta(Phot) of 9.7+/-1.0mas and 12.3+/-1.0mas, optical depths tau(V)(Al2O3) of 1.5+/-0.5 and 1.35+/-0.2, and inner radii R(in) of 1.9+/-0.3R(Phot) and 2.2+/-0.3R(Phot), respectively. Best-fit parameters for GX Mon were Theta(Phot)=8.7+/-1.3mas, tau(V)(Al2O3)=1.9+/-0.6, R(in)(Al2O3)=2.1+/-0.3R(Phot), tau(V)(silicate)=3.2+/-0.5, and R(in)(silicate)=4.6+/-0.2R(Phot). Our model fits constrain the chemical composition and the inner boundary radii of the dust shells, as well as the photospheric angular diameters. Our interferometric results are consistent with Al2O3 grains condensing close to the stellar surface at about 2 stellar radii, co-located with the extended atmosphere and SiO maser emission, and warm silicate grains at larger distances of about 4--5 stellar radii. We verified that the number densities of aluminum can match that of the best-fit Al2O3 dust shell near the inner dust radius in sufficiently extended atmospheres, confirming that Al2O3 grains can be seed particles for the further dust condensation. Together with literature data of the mass-loss rates, our sample is consistent with a hypothesis that stars with low mass-loss rates form primarily dust that preserves the spectral properties of Al2O3, and stars with higher mass-loss rate form dust with properties of warm silicates.
Aluminium monoxide, AlO, is likely efficiently depleted from the gas around oxygen-rich evolved stars to form alumina clusters and dust seeds. Its presence in the extended atmospheres of evolved stars has been derived from optical spectroscopy. More recently, AlO gas was also detected at long wavelengths around the supergiant VY CMa and the oxygen-rich asymptotic giant branch (AGB) star o Cet (Mira A). In search of AlO, we mined data obtained with APEX, the IRAM 30m telescope, Herschel/HIFI, SMA, and ALMA, which were primarily aimed at studying other molecular species. We report here on observations of AlO towards a sample of eight oxygen-rich AGB stars in different rotational transitions, up to seven for some stars. We present definite detections of one rotational transition of AlO for o Cet and R Aqr, and tentative detections of one transition for R Dor and o Cet, and two for IK Tau and W Hya. The presented spectra of WX Psc, R Cas, and TX Cam show no signature of AlO. For o Cet, R Aqr, and IK Tau, we find that the AlO(N=9-8) emission likely traces the inner parts of the wind, out to only a few tens of AU, where the gas has not yet reached its terminal velocity. The conclusive detections of AlO emission in the case of o Cet and R Aqr confirm the presence of AlO gas in outflows of AGB stars. The tentative detections further support this. Since most of the observations presented in this study were obtained with stronger emission from other species than AlO in mind, observations with higher sensitivity in combination with high angular resolution will improve our understanding of the presence and behaviour of AlO. From the current data sets we cannot firmly conclude whether there is a direct correlation between the wind properties and the detection rate of AlO emission. We hope that this study can serve as a stimulus to perform sample studies in search of AlO in oxygen-rich outflows.
ALMA observations show a non-detection of carbon monoxide around the four most luminous asymptotic giant branch (AGB) stars in the globular cluster 47 Tucanae. Stellar evolution models and star counts show that the mass-loss rates from these stars sh ould be ~1.2-3.5 x 10^-7 solar masses per year. We would naively expect such stars to be detectable at this distance (4.5 kpc). By modelling the ultraviolet radiation field from post-AGB stars and white dwarfs in 47 Tuc, we conclude CO should be dissociated abnormally close to the stars. We estimate that the CO envelopes will be truncated at a few hundred stellar radii from their host stars and that the line intensities are about two orders of magnitude below our current detection limits. The truncation of CO envelopes should be important for AGB stars in dense clusters. Observing the CO (3-2) and higher transitions and targeting stars far from the centres of clusters should result in the detections needed to measure the outflow velocities from these stars.
We model the synthesis of molecules and dust in the inner wind of the oxygen-rich Mira-type star IK Tau, by considering the effects of periodic shocks induced by the stellar pulsation on the gas, and by following the non-equilibrium chemistry in the shocked gas layers between 1 and 10 Rstar. We consider a complete set of molecules and dust clusters, and combine the nucleation phase of dust formation with the condensation of these clusters into dust grains. Our derived molecular abundances and dust properties are compared to the most recent observational data. The chemistry is described by using a chemical kinetic network of reactions and the condensation mechanism is described by a Brownian formalism. The shocks drive an active non-equilibrium chemistry in the dust formation zone of IK Tau where the collision destruction of CO in the post-shock gas triggers the formation of C-bearing species such as HCN and CS. Most of the modelled molecular abundances agree well with the latest values derived from Herschel data. Clusters of alumina are produced within 2 Rstar and lead to a population of alumina grains close to the stellar surface. Clusters of silicates form at larger radii (r > 3 Rstar), where their nucleation is triggered by the formation of HSiO and H2SiO. They efficiently condense and reach their final grain size distribution between ~ 6 and 8 Rstar, with a major population of medium size grains peaking at~ 0.02 microns. This two dust-shell configuration agrees with recent interferometric observations. The derived dust-to-gas mass ratio for IK Tau is in the range 1-6x10^-3 and agrees with values derived from observations of O-rich Mira-type stars. Our results confirm the importance of periodic shocks in chemically shaping the inner wind of AGB stars and providing gas conditions conducive to the efficient synthesis of molecules and dust by non-equilibrium processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا