ترغب بنشر مسار تعليمي؟ اضغط هنا

Cusps, Congruence Groups and Monstrous Dessins

200   0   0.0 ( 0 )
 نشر من قبل Valdo Tatitscheff
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study general properties of the dessins denfants associated with the Hecke congruence subgroups $Gamma_0(N)$ of the modular group $mathrm{PSL}_2(mathbb{R})$. The definition of the $Gamma_0(N)$ as the stabilisers of couples of projective lattices in a two-dimensional vector space gives an interpretation of the quotient set $Gamma_0(N)backslashmathrm{PSL}_2(mathbb{R})$ as the projective lattices $N$-hyperdistant from a reference one, and hence as the projective line over the ring $mathbb{Z}/Nmathbb{Z}$. The natural action of $mathrm{PSL}_2(mathbb{R})$ on the lattices defines a dessin denfant structure, allowing for a combinatorial approach to features of the classical modular curves, such as the torsion points and the cusps. We tabulate the dessins denfants associated with the $15$ Hecke congruence subgroups of genus zero, which arise in Moonshine for the Monster sporadic group.



قيم البحث

اقرأ أيضاً

A dessin denfant, or dessin, is a bicolored graph embedded into a Riemann surface, and the monodromy group is an algebraic invariant of the dessin generated by rotations of edges about black and white vertices. A rational billiards surface is a two d imensional surface that allows one to view the path of a billiards ball as a continuous path. In this paper, we classify the monodromy groups of dessins associated to rational triangular billiards surfaces.
We generalise Dworks theory of $p$-adic formal congruences from the univariate to a multi-variate setting. We apply our results to prove integrality assertions on the Taylor coefficients of (multi-variable) mirror maps. More precisely, with $mathbf z =(z_1,z_2,...,z_d)$, we show that the Taylor coefficients of the multi-variable series $q(mathbf z)=z_iexp(G(mathbf z)/F(mathbf z))$ are integers, where $F(mathbf z)$ and $G(mathbf z)+log(z_i) F(mathbf z)$, $i=1,2,...,d$, are specific solutions of certain GKZ systems. This result implies the integrality of the Taylor coefficients of numerous families of multi-variable mirror maps of Calabi-Yau complete intersections in weighted projective spaces, as well as of many one-variable mirror maps in the Tables of Calabi-Yau equations [arXiv:math/0507430] of Almkvist, van Enckevort, van Straten and Zudilin. In particular, our results prove a conjecture of Batyrev and van Straten in [Comm. Math. Phys. 168 (1995), 493-533] on the integrality of the Taylor coefficients of canonical coordinates for a large family of such coordinates in several variables.
111 - Gareth A. Jones 2018
A detailed proof is given of a theorem describing the centraliser of a transitive permutation group, with applications to automorphism groups of objects in various categories of maps, hypermaps, dessins, polytopes and covering spaces, where the autom orphism group of an object is the centraliser of its monodromy group. An alternative form of the theorem, valid for finite objects, is discussed, with counterexamples based on Baumslag--Solitar groups to show how it fails more generally. The automorphism groups of objects with primitive monodromy groups are described, as are those of non-connected objects.
We show that the Taylor coefficients of the series ${bf q}(z)=zexp({bf G}(z)/{bf F}(z))$ are integers, where ${bf F}(z)$ and ${bf G}(z)+log(z) {bf F}(z)$ are specific solutions of certain hypergeometric differential equations with maximal unipotent m onodromy at $z=0$. We also address the question of finding the largest integer $u$ such that the Taylor coefficients of $(z ^{-1}{bf q}(z))^{1/u}$ are still integers. As consequences, we are able to prove numerous integrality results for the Taylor coefficients of mirror maps of Calabi-Yau complete intersections in weighted projective spaces, which improve and refine previous results by Lian and Yau, and by Zudilin. In particular, we prove the general ``integrality conjecture of Zudilin about these mirror maps. A further outcome of the present study is the determination of the Dwork-Kontsevich sequence $(u_N)_{Nge1}$, where $u_N$ is the largest integer such that $q(z)^{1/u_N}$ is a series with integer coefficients, where $q(z)=exp(F(z)/G(z))$, $F(z)=sum_{m=0} ^{infty} (Nm)! z^m/m!^N$ and $G(z)=sum_{m=1} ^{infty} (H_{Nm}-H_m)(Nm)! z^m/m!^N$, with $H_n$ denoting the $n$-th harmonic number, conditional on the conjecture that there are no prime number $p$ and integer $N$ such that the $p$-adic valuation of $H_N-1$ is strictly greater than 3.
268 - Jeremy Miller , Peter Patzt , 2019
Let $Gamma_n(p)$ be the level-$p$ principal congruence subgroup of $text{SL}_n(mathbb{Z})$. Borel-Serre proved that the cohomology of $Gamma_n(p)$ vanishes above degree $binom{n}{2}$. We study the cohomology in this top degree $binom{n}{2}$. Let $mat hcal{T}_n(mathbb{Q})$ denote the Tits building of $text{SL}_n(mathbb{Q})$. Lee-Szczarba conjectured that $H^{binom{n}{2}}(Gamma_n(p))$ is isomorphic to $widetilde{H}_{n-2}(mathcal{T}_n(mathbb{Q})/Gamma_n(p))$ and proved that this holds for $p=3$. We partially prove and partially disprove this conjecture by showing that a natural map $H^{binom{n}{2}}(Gamma_n(p)) rightarrow widetilde{H}_{n-2}(mathcal{T}_n(mathbb{Q})/Gamma_n(p))$ is always surjective, but is only injective for $p leq 5$. In particular, we completely calculate $H^{binom{n}{2}}(Gamma_n(5))$ and improve known lower bounds for the ranks of $H^{binom{n}{2}}(Gamma_n(p))$ for $p geq 5$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا