ﻻ يوجد ملخص باللغة العربية
We consider multi-agent systems where agents actions and beliefs are determined aleatorically, or by the throw of dice. This system consists of possible worlds that assign distributions to independent random variables, and agents who assign probabilities to these possible worlds. We present a novel syntax and semantics for such system, and show that they generalise Modal Logic. We also give a sound and complete calculus for reasoning in the base semantics, and a sound calculus for the full modal semantics, that we conjecture to be complete. Finally we discuss some application to reasoning about game playing agents.
In this paper, we show how to interpret a language featuring concurrency, references and replication into proof nets, which correspond to a fragment of differential linear logic. We prove a simulation and adequacy theorem. A key element in our transl
In probabilistic coherence spaces, a denotational model of probabilistic functional languages, morphisms are analytic and therefore smooth. We explore two related applications of the corresponding derivatives. First we show how derivatives allow to c
This paper studies the quantitative refinements of Abramskys applicative similarity and bisimilarity in the context of a generalisation of Fuzz, a call-by-value $lambda$-calculus with a linear type system that can express programs sensitivity, enrich
The Shapes Constraint Language (SHACL) allows for formalizing constraints over RDF data graphs. A shape groups a set of constraints that may be fulfilled by nodes in the RDF graph. We investigate the problem of containment between SHACL shapes. One s
In a paper entitled Binary lambda calculus and combinatory logic, John Tromp presents a simple way of encoding lambda calculus terms as binary sequences. In what follows, we study the numbers of binary strings of a given size that represent lambda te