ﻻ يوجد ملخص باللغة العربية
First principle calculations of charge transfer in DNA molecules are computationally expensive given that charge carriers migrate in interaction with intra- and inter-molecular atomic motion. Screening sequences, e.g. to identify excellent electrical conductors is challenging even when adopting coarse-grained models and effective computational schemes that do not explicitly describe atomic dynamics. In this work, we present a machine learning (ML) model that allows the inexpensive prediction of the electrical conductance of millions of {it long} double-stranded DNA (dsDNA) sequences, reducing computational costs by orders of magnitude. The algorithm is trained on {it short} DNA nanojunctions with $n=3-7$ base pairs. The electrical conductance of the training set is computed with a quantum scattering method, which captures charge-nuclei scattering processes. We demonstrate that the ML method accurately predicts the electrical conductance of varied dsDNA junctions tracing different transport mechanisms: coherent (short-range) quantum tunneling, on-resonance (ballistic) transport, and incoherent site-to-site hopping. Furthermore, the ML approach supports physical observations that clusters of nucleotides regulate DNA transport behavior. The input features tested in this work could be used in other ML studies of charge transport in complex polymers, in the search for promising electronic and thermoelectric materials.
Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modification remains challenging. In this work, we computationally explore the possibility o
Charge migration along DNA molecules has attracted scientific interest for over half a century. Reports on possible high rates of charge transfer between donor and acceptor through the DNA, obtained in the last decade from solution chemistry experime
We present an analytical model for the role of hydrogen bonding on the spin-orbit coupling of model DNA molecule. Here we analyze in detail the electric fields due to the polarization of the Hydrogen bond on the DNA base pairs and derive, within tigh
As a secondary structure of DNA, DNA tetrahedra exhibit intriguing charge transport phenomena and provide a promising platform for wide applications like biosensors, as shown in recent electrochemical experiments. Here, we study charge transport in a
A subcritical load on a disordered material can induce creep damage. The creep rate in this case exhibits three temporal regimes viz. an initial decelerating regime followed by a steady-state regime and a stage of accelerating creep that ultimately l