ﻻ يوجد ملخص باللغة العربية
We evaluate $I=2$ two-pion scattering length through the scattering amplitude obtained by the Bethe-Salpeter wave function inside the interaction range. The scattering length is computed with $m_pi = 0.52-0.86$ GeV in the quenched lattice QCD. Furthermore, the half-off-shell amplitude is calculated, from which the effective range is extracted. Our results are compared with those by the conventional finite size method and by chiral perturbation theory to confirm consistency.
We propose a method to calculate scattering amplitudes using the Bethe-Salpeter wave function inside the interaction range on the lattice. For an exploratory study of this method, we evaluate a scattering length of $I=2$ S-wave two pions by the use o
We evaluate scattering amplitudes at on-shell and half off-shell for $I=2$ S-wave two-pion system using the Bethe-Salpeter wave function inside the interaction range in the quenched QCD. The scattering length and effective range are extracted from th
We present a report on a calculation of scattering length for I=2 $S$-wave two-pion system from two-pion wave function. Calculations are made with an RG-improved action for gluons and improved Wilson action for quarks at $a^{-1}=1.207(12) {rm GeV}$ o
We observe that the ratio of the on-shell scattering amplitude to the Bethe-Salpeter (BS) wave function outside the interaction range is almost independent of time in our quenched calculation of the $I=2$ two-pion scattering with almost zero momentum
We calculate the two-pion wave function in the ground state of the I=2 $S$-wave system and find the interaction range between two pions, which allows us to examine the validity of the necessary condition for the finite-volume method for the scatterin