ﻻ يوجد ملخص باللغة العربية
Recently amorphous oxide semiconductors (AOS) have gained commercial interest due to their low-temperature processability, high mobility and areal uniformity for display backplanes and other large area applications. A multi-cation amorphous oxide (a-IGZO) has been researched extensively and is now being used in commercial applications. It is proposed in the literature that overlapping In-5s orbitals form the conduction path and the carrier mobility is limited due to the presence of multiple cations which create a potential barrier for the electronic transport in a-IGZO semiconductors. A multi-anion approach towards amorphous semiconductors has been suggested to overcome this limitation and has been shown to achieve hall mobilities up to an order of magnitude higher compared to multi-cation amorphous semiconductors. In the present work, we compare the electronic structure and electronic transport in a multi-cation amorphous semiconductor, a-IGZO and a multi-anion amorphous semiconductor, a-ZnON using computational methods. Our results show that in a-IGZO, the carrier transport path is through the overlap of outer s-orbitals of mixed cations and in a-ZnON, the transport path is formed by the overlap of Zn-4s orbitals, which is the only type of metal cation present. We also show that for multi-component ionic amorphous semiconductors, electron transport can be explained in terms of orbital overlap integral which can be calculated from structural information and has a direct correlation with the carrier effective mass which is calculated using computationally expensive first principle DFT methods.
The charge transport mechanism in amorphous oxide semiconductors (AOS) is a matter of controversial debates. Most theoretical studies so far neglected the percolation nature of the phenomenon. In this article, a recipe for theoretical description of
The structure of amorphous materials-continuous random networks (CRN) vs. CRN containing randomly dispersed crystallites-has been debated for decades. In two-dimensional (2D) materials, this question can be addressed more directly. Recently, controll
By means of theoretical modeling and experimental synthesis and characterization, we investigate the structural properties of amorphous Zr-Si-C. Two chemical compositions are selected, Zr0.31Si0.29C0.40 and Zr0.60Si0.33C0.07. The amorphous structures
High finesse optical cavities of current interferometric gravitational-wave detectors are significantly limited in sensitivity by laser quantum noise and coating thermal noise. The thermal noise is associated with internal energy dissipation in the m
Wide-bandgap perovskite stannates are of interest for the emergent all-oxide transparent electronic devices due to their unparalleled room temperature electron mobility. Considering the advantage of amorphous material in integrating with non-semicond