ﻻ يوجد ملخص باللغة العربية
We study truncated objects using elementary methods. Concretely, we use universes and the resulting natural number object to define internal truncation levels and prove they behave similar to standard truncated objects. Moreover, we take an elementary approach to localizations, giving various equivalent conditions that characterize localizations and constructing a localization out of a sub-universe of local objects via an internal right Kan extension. We then use this general approach, as well as an inductive approach, to construct truncation functors. We use the resulting truncation functors to prove classical results about truncations, such as Blakers-Massey theorem, in the elementary setting. We also give examples of non-presentable $(infty, 1)$-categories where the elementary approach can be used to define and compute truncations. Finally, we turn around and use truncations to study elementary $(infty, 1)$-toposes and show how they can help us better understand subobject classifiers and universes
Mittag-Leffler condition ensures the exactness of the inverse limit of short exact sequences indexed on a partially ordered set $(I,leq)$ admitting a $countable$ cofinal subset. We extend Mittag-Leffler condition by relatively relaxing the countabili
We prove a stabilization theorem for algebras of n-operads in a monoidal model category. It implies a version of Baez-Dolan stabilization hypothesis for Rezks weak n-categories and some other stabilization results.
There is an equivalence relation on the set of smooth maps of a manifold into the stable unitary group, defined using a Chern-Simons type form, whose equivalence classes form an abelian group under ordinary block sum of matrices. This construction is
Let $mathcal{C}$ be a finitely bicomplete category and $mathcal{W}$ a subcategory. We prove that the existence of a model structure on $mathcal{C}$ with $mathcal{W}$ as subcategory of weak equivalence is not first order expressible. Along the way we
We present an alternative approach to the theory of free Gibbs states with convex potentials. Instead of solving SDEs, we combine PDE techniques with a notion of asymptotic approximability by trace polynomials for a sequence of functions on $M_N(math