ﻻ يوجد ملخص باللغة العربية
A discrete-element method (DEM) assembly of virtual particles is calibrated to approximate the behavior of a natural sand in undrained loading. The particles are octahedral, bumpy clusters of spheres that are compacted into assemblies of different densities. The contact model is a Jager generalization of the Hertz contact, which yields a small-strain shear modulus that is proportional to the square root of confining stress. Simulations made of triaxial extension and compression loading conditions and of simple shear produce behaviors that are similar to sand. Undrained cyclic shearing simulations are performed with nonuniform amplitudes of shearing pulses and with 24 irregular seismic shearing sequences. A methodology is proposed for quantifying the severities of such irregular shearing records, allowing the 24 sequences to be ranked in severity. The relative severities of the 24 seismic sequences show an anomalous dependence on sampling density. Four scalar measures are proposed for predicting the severity of a particular loading sequence. A stress-based scalar measure shows superior efficiency in predicting initial liquefaction and pore pressure rise.
We present a statistical model which is able to capture some interesting features exhibited in the Brazilian test. The model is based on breakable elements which break when the force experienced by the elements exceed their own load capacity. In this
A flexible fiber model based on the discrete element method (DEM) is presented and validated for the simulation of uniaxial compression of flexible fibers in a cylindrical container. It is found that the contact force models in the DEM simulations ha
Due to neutron irradiation, solid breeder blankets are subjected to complex thermo-mechanical conditions. Within one breeder unit, the ceramic breeder bed is composed of spherical-shaped lithium orthosilicate pebbles, and as a type of granular materi
The New Horizons mission has returned stunning images of the bilobate Kuiper belt object (486958) Arrokoth. It is a contact binary, formed from two intact and relatively undisturbed predecessor objects joined by a narrow contact region. We use a vers
We introduce a contact law for the normal force generated between two contacting, elastically anisotropic bodies of arbitrary geometry. The only requirement is that their surfaces be smooth and frictionless. This anisotropic contact law is obtained f