ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice-mismatched semiconductor heterostructures

58   0   0.0 ( 0 )
 نشر من قبل Zhenqiang Ma
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Semiconductor heterostructure is a critical building block for modern semiconductor devices. However, forming semiconductor heterostructures of lattice-mismatch has been a great challenge for several decades. Epitaxial growth is infeasible to form abrupt heterostructures with large lattice-mismatch while mechanical-thermal bonding results in a high density of interface defects and therefore severely limits device applications. Here we show an ultra-thin oxide-interfaced approach for the successful formation of lattice-mismatched semiconductor heterostructures. Following the depiction of a theory on the role of interface oxide in forming the heterostructures, we describe experimental demonstrations of Ge/Si (diamond lattices), Si/GaAs (zinc blende lattice), GaAs/GaN (hexagon lattice), and Si/GaN heterostructures. Extraordinary electrical performances in terms of ideality factor, current on/off ratio, and reverse breakdown voltage are measured from p-n diodes fabricated from the four types of heterostructures, significantly outperforming diodes derived from other methods. Our demonstrations indicate the versatility of the ultra-thin-oxide-interface approach in forming lattice-mismatched heterostructures, open up a much larger possibility for material combinations for heterostructures, and pave the way toward broader applications in electronic and optoelectronic realms.



قيم البحث

اقرأ أيضاً

60 - Nadine Gachter 2020
The thermoelectric properties of a nanoscale germanium segment connected by aluminium nanowires are studied using scanning thermal microscopy. The germanium segment of 168,nm length features atomically sharp interfaces to the aluminium wires and is s urrounded by an Al$_2$O$_3$ shell. The temperature distribution along the self-heated nanowire is measured as a function of the applied electrical current, for both Joule and Peltier effects. An analysis is developed that is able to extract the thermal and thermoelectric properties including thermal conductivity, the thermal boundary resistance to the substrate and the Peltier coefficient from a single measurement. Our investigations demonstrate the potential of quantitative measurements of temperature around self-heated devices and structures down to the scattering length of heat carriers.
Two-dimensional (2D) materials family with its many members and different properties has recently drawn great attention. Thanks to their atomic thickness and smooth surface, 2D materials can be constructed into heterostructures or homostructures in t he fashion of out-of-plane perpendicular stacking or in-plane lateral stitching, resulting in unexpected physical and chemical properties and applications in many areas. In particular, 2D metal-semiconductor heterostructures or homostructures (MSHSs) which integrate 2D metals and 2D semiconductors, have shown great promise in future integrated electronics and energy-related applications. In this review, MSHSs with different structures and dimensionalities are first introduced, followed by several ways to prepare them. Their applications in electronics and optoelectronics, energy storage and conversion, and their use as platforms to exploit new physics are then discussed. Finally, we give our perspectives about the challenges and future research directions in this emerging field.
179 - Bradley A. Foreman 2003
In this paper a multi-band envelope-function Hamiltonian for lattice-matched semiconductor heterostructures is derived from first-principles norm-conserving pseudopotentials. The theory is applicable to isovalent or heterovalent heterostructures with macroscopically neutral interfaces and no spontaneous bulk polarization. The key assumption -- proved in earlier numerical studies -- is that the heterostructure can be treated as a weak perturbation with respect to some periodic reference crystal, with the nonlinear response small in comparison to the linear response. Quadratic response theory is then used in conjunction with k.p perturbation theory to develop a multi-band effective-mass Hamiltonian (for slowly varying envelope functions) in which all interface band-mixing effects are determined by the linear response. To within terms of the same order as the position dependence of the effective mass, the quadratic response contributes only a bulk band offset term and an interface dipole term, both of which are diagonal in the effective-mass Hamiltonian. Long-range multipole Coulomb fields arise in quantum wires or dots, but have no qualitative effect in two-dimensional systems beyond a dipole contribution to the band offsets.
Tunable magnetic interactions in high-mobility nonmagnetic semiconductor heterostructures are centrally important to spin-based quantum technologies. Conventionally, this requires incorporation of magnetic impurities within the two-dimensional (2D) e lectron layer of the heterostructures, which is achieved either by doping with ferromagnetic atoms, or by electrostatically printing artificial atoms or quantum dots. Here we report experimental evidence of a third, and intrinsic, source of localized spins in high-mobility GaAs/AlGaAs heterostructures, which are clearly observed in the limit of large setback distance (=80 nm) in modulation doping. Local nonequilibrium transport spectroscopy in these systems reveals existence of multiple spins, which are located in a quasi-regular manner in the 2D Fermi sea, and mutually interact at temperatures below 100 milliKelvin via the Ruderman-Kittel-Kasuya-Yosida (RKKY) indirect exchange. The presence of such a spin-array, whose microscopic origin appears to be disorder-bound, simulates a 2D lattice-Kondo system with gate-tunable energy scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا